Arizona Public Service Comprehensive Fire Mitigation Plan

2024

Version January 1.0

2024 APS Comprehensive Fire Mitigation Plan

Contents

1. Int	roduction	7
1.1.	The APS Promise	7
1.2.	APS Fire Mitigation Vision and Mission Statement	7
2. Ov	erview of the Comprehensive Fire Mitigation Plan	7
2.1.	CFMP Contributors	8
3. Go	als and Objectives of the Plan	8
3.1.	CFMP Goals	8
3.2.	CFMP Objectives	8
3.3.	Collaborative Goals with Stakeholders	9
3.4.	Executive Summary	9
4. Wi	ldfire Mitigation Challenges 1	0
4.1.	Arizona's Forest Ecosystem and Landscape 1	. 1
4.2.	Arizona's Climate 1	.2
4.2	2.1. Arizona Climate Classification 1	.2
4.3.	Arizona's Weather Conditions 1	.3
4.4.	Fire Mitigation Critical Issues 1	.3
5. Wi	ldfire Risk 1	.3
5.1.	Methodology for Enterprise-Wide Risk Assessment 1	.4
5.2.	Fire Risk Assessment 1	.4
5.2	2.1. Ongoing Assessments & Risk Analysis 1	.6
5.3.	Emergency Planning and Preparedness1	6
5.4.	Overview of Emergency Operations Plan 1	7
6. Me	etrics and Underlying Data1	7
6.1.	Description of program targets1	7
6.2.	Lessons Learned: Tracking Metrics in 2024 1	7
7. Ba	seline Ignition and Wildfire Risk Exposure 1	8
7.1.	Common Weather Regimes 1	8
7.2.	Current baseline state of service territory and utility 1	8
7.3.	Fire ignitions tracked by district	8
8. Fir	e Mitigation Meteorology	.9
8.1.	Fire mitigation meteorology support	

	8.2.	Key weather elements, impacts and hazards	19
	8.3.	Graphical and Narrative Forecasts	20
	8.4.	Additional support functions	20
	8.4.	1. Fire mitigation meteorology SharePoint	20
	8.4.	2. Weather outlook and situational awareness dashboard	20
	8.5.	Situational awareness and forecasting	20
9.	Wil	dfire Mitigation Strategy	20
	9.1.	Risk assessment and mapping	21
	9.2.	Wildfire Call, Plan and Respond (CPR)	21
	9.3.	Wildland indices as metrics for preparedness levels	22
	9.4.	District preparedness levels	23
	9.5.	Preparedness Level Work Restrictions	24
	9.6.	Red Flag Standing Order	26
	9.7.	APS Wildfire Awareness Dashboard	27
	9.8.	Situational awareness and forecasting	28
	9.9.	Camera network and weather station integration	29
	9.10.	Fire science and climate adaptation	29
	9.11.	Fire Threat Index	29
	9.12.	Fire Growth Potential (Fire Rate of Spread)	29
	9.13.	Weather Threat Index (Ongoing Weather Forecast)	29
	9.14.	Fire Potential Index	30
1(). Ope	erations during elevated fire conditions (crews and contractors)	30
	10.1.	Field Operations during elevated fire conditions	30
	10.2.	Fire Guard in Industrial Plan Restrictions	32
	10.3.	Red Flag Standing Order	33
	10.4.	No-Reclose Strategy	34
	10.5.	APS and the Incident Command System	36
	10.5	5.1. Training and seasonal awareness	36
	10.5	5.2. Fire mitigation forum and seasonal preparation meetings	37
	10.5	5.3. APS crews and contractors requirements	38
	10.6.	Federal, State, and Tribal lands during restrictions and closures	38
1	l. Gri	d design and system hardening	39
	11.1.	Grid Visualization & Automation	39
	11.2.	Advanced protection	40

11.3. Planne	ed additions, removals and upgrade of utility equipment	. 42
11.4. NRS (No-Reclose Strategy)	. 42
11.5. Distrit	oution communications reliability improvements	. 43
11.6. Distril	oution overhead system hardening	. 44
11.6.1.	Steel Poles	. 44
11.6.2.	Wood Pole Wrap	. 44
11.6.3.	Fusing	. 44
11.6.4.	Surge Arresters	. 45
11.6.5.	Wildlife Guards	. 45
11.6.6.	Covered conductor	. 46
11.7. Pole re	eplacement and reinforcement	. 46
11.8. Micro	grids	. 46
11.9. Transı	nission tower maintenance and replacement	. 46
12. Asset man	agement	. 46
	aphic information system data	
12.2. Tracki	ng and analysis of STG/GTS	. 47
	evated Fire Conditions Line Patrols	
13. Vegetatior	n management and inspections	. 48
13.1. Detail	ed inspections of vegetation around distribution	. 48
13.2. Detail	ed inspections of vegetation around transmission	. 49
-	ency response vegetation management	
13.4. Fuels	management	. 49
13.5. LiDA	R inspections of vegetation around distribution infrastructure	. 49
13.6. LiDA	R inspections for vegetation around transmission infrastructure	. 50
13.7. Patrol	inspections of vegetation around distribution infrastructure	. 50
13.8. Patrol	inspections of vegetation around transmission infrastructure	. 50
13.9. Hazar	d tree removal	. 50
13.10. Substa	tion inspections, vegetation management	. 51
13.11. Renew	vable Energy and Batteries, Vegetation Management	. 51
13.12. DSAP	·	. 51
13.13. Integra	ated vegetation management (IVM)	. 52
13.14. Interna	ational code council compliance for utility vegetation maintenance	. 53
13.15. Right	Tree-Right Place	. 54
14. Stakeholde	er and public coordination during an incident	. 54

14.1. Emergency planning and preparedness programs	
14.2. Emergency Management and Fire Response	54
14.3. Adequate and trained workforce for service restoration	55
14.4. Community outreach, public awareness, and communication efforts	56
14.5. Preparedness and planning for service restoration	56
14.6. After Action Reporting and Improvement	57
14.7. Emergency management operations	57
14.8. Stakeholder cooperation and community engagement	57
14.9. Cooperation with suppression agencies	58
14.9.1. Prescribed fire impacts to APS	59
15. Continuous Improvement	59
15.1. Continuous improvement working group	60
15.2. Measures of effectiveness	60
15.3. International wildfire risk mitigation consortium	61
16. Past three-year impacts from wildfire	62
17. Planned Implementations for 2024 to Mitigate Risk	62
18. Plan summary	62
19. Glossary of terms and acronyms	63
20. APS references and document locations	65
21. External references	66

This Page Intentionally Left Blank

1 **1. Introduction**

- 2 Arizona continues to experience larger and more frequent wildfires throughout the landscape.
- 3 APS is working to address the challenge of safely and reliably serving customers while
- 4 mitigating wildfire potential. From 2000 to 2020, Arizona experienced over 600 large fires (fires
- 5 greater than 100 acres in size) within the APS service territory. We are witnessing increasing
- 6 trends in size and frequency of wildfires. This increase in activity means we must remain
- 7 adaptable and evolve, ensuring our mitigation measures are commensurate with the risk. We
- have implemented a comprehensive, multi-faceted approach utilizing strategies and programs
 centered around prevention, mitigation and response to wildfires. This Comprehensive Fire
- 10 Mitigation Plan (CFMP) outlines the approach and actions taken by APS. The initiatives and
- strategies described in this document are continued from previous foundational years of fire
- 12 mitigation at APS.

13 1.1. The APS Promise

14 The APS Promise is our commitment to customers, the community and each other. Our promise

15 is why we are here (our purpose), what we are here to do (vision and mission) and the principles

16 and behaviors that will empower us to achieve our strategic goals. It represents the opportunity to

17 build on our cultural strengths and develop new behaviors to enable our future success as we

18 serve to deliver clean, reliable and affordable energy.

- 19 Our Purpose: As Arizona stewards, we do what is right for the people and prosperity of our state.
- 20 Our Vision: Create a sustainable energy future for Arizona.
- 21 Our Mission: Serve our customers with clean, reliable and affordable energy.
- 22 Our Principles: Design for tomorrow, empower each other and succeed together.
- 23
- 24 1.2. APS Fire Mitigation Vision and Mission Statement
- 25 Vision
- 26 APS's Fire Mitigation program is committed to reducing wildfire risk to our human and
- 27 environmental communities. APS is committed to our customers and stakeholders as we work
- together to address the challenges of reducing fire fuels and creating defensible space.
- 29 Mission
- Provide safety, mitigate risk, increase reliability, and promote cohesive fire mitigation strategies
 across Arizona with all stakeholders.

32 **2.** Overview of the Comprehensive Fire Mitigation Plan

The CFMP was created to support and uphold the APS Promise. The risk of wildfire creates
 diverse and dynamic challenges when it comes to creating and delivering reliable electricity

- across the APS service territory. APS is committed to reducing the risk of wildfires and has
- 36 integrated fire mitigation strategies and efforts throughout the enterprise. This document outlines
- 37 fire mitigation strategies, procedures and protocols in order to create awareness, understanding
- 38 and provide guidance to all APS business units on how to prevent, mitigate and respond to
- 39 wildfire events.

40 2.1. CFMP Contributors

- 41 The APS CFMP details the responsibilities for the individuals who are executing the plan. This
- 42 includes the executives and program owners specific to each component of the plan. The CFMP
- 43 is a companywide, interdepartmental effort involving resources and programs across the APS
- 44 business units.
- 45 All APS business units are responsible for wildfire risk and have the primary responsibility of
- 46 owning and executing the CFMP. Responsible business unit leadership and executives within
- 47 APS shall track progress metrics and activities to reduce the risk of wildfire exposure and
- 48 ignition probability.

49 **3. Goals and Objectives of the Plan**

- 50 Wildfire risk mitigation strategies have continued to evolve. With the increasing impact from a
- 51 variety of factors such as climate change, development, and population growth in fire-prone
- areas, catastrophic wildfires continue to pose a threat throughout Arizona and the APS service
- 53 territory. The CFMP describes the company's wildfire mitigation strategies and programs that
- have been developed and implemented as APS expresses its commitment for continuous
- 55 improvement and best management practices.

56 3.1. CFMP Goals

- Reduce wildfire risk.
- 58 Deliver reliable electricity.
- Create a common operating picture for APS business units.
- Promote a cohesive strategy among stakeholders.

61 3.2. CFMP Objectives

- Identify the individuals responsible for executing the CFMP.
- Outline fire mitigation policies, procedures and protocols.
- Establish fire mitigation chain of command.
- Identify APS fire mitigation strategies and programs.
- Identify necessary communications and notifications in the event power is to be shut off
 due to wildfire.
- Identify vegetation management best practices for APS Transmission and Distribution
 Rights-of-Ways.
- Establish Fire Risk Index and re-evaluate for necessary updates.
- Monitor conditions and assign preparedness levels for each APS district.
- Ensure APS has an adequate workforce to manage restoration efforts after an event.

- Host an annual Fire Mitigation Forum.
- Align CFMP with the APS Emergency Preparedness Plan, as well as all associated APS
 3P documentation.

76 3.3. Collaborative Goals with Stakeholders

77 Forest Health

- Encourage a resilient and diverse forest ecosystem around APS electrical systems.
- Encourage landscape-scale outcomes to restore healthy ecosystems and enhance sustainability.

81 Wildfire Risk and Mitigation

- Provide a CFMP to support the safe and reliable delivery of electricity.
- Identify wildland ecosystems where appropriate fire regimes maintain health and resilient natural vegetation.
- Promote Fire Adapted Communities and Defensible Space for healthy landscapes and wildfire prepared communities.
- Integrate the National Cohesive Strategy into the CFMP while educating the customers
 APS serves.

89 Economics

Increase community recognition around the economic importance of protecting healthy,
 natural systems.

92 Climate

- Increase resilience of ecosystems to climate disruption.
- Promote Right Tree–Right Place practices.
- Promote and participate in Right-of-Ways Stewardship.

96 **People and Culture**

- Share and uphold the APS Promise.
- Improve communication between all land management agencies, indigenous tribes and other cultural groups regarding varying perspectives and beliefs related to fire mitigation.
- Appropriately communicate the Vision and Mission of the APS CFMP.

101 3.4. Executive Summary

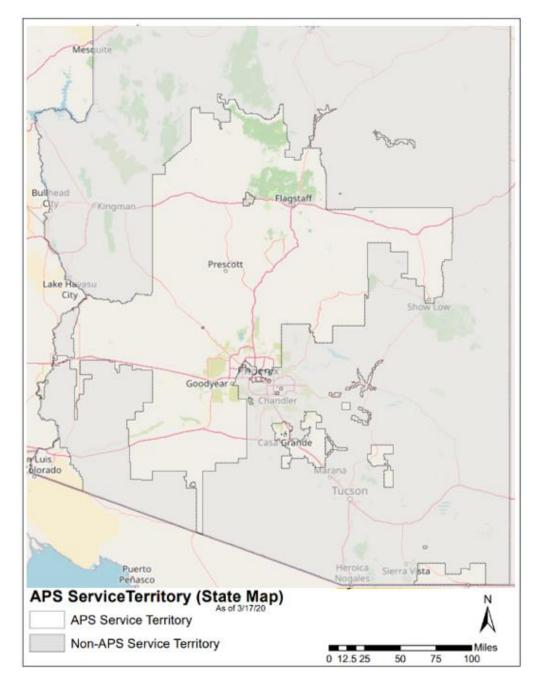
- 102 In Arizona, over 48% of structures are in the Wildland Urban Interface (USDA, 2010).
- 103 Furthermore, 71% of these structures are second homes and not primary residences, which can
- 104 pose additional challenges in managing fuels and fire mitigation due to absentee ownership.
- 105 Extended drought over the past decade has caused forest and vegetation ecosystems to be
- stressed from the lack of regular and sufficient moisture. This is compounded by shorter, drier
- 107 winters and longer, warmer summers (USDA, 2010).

- 108 Reducing risk to our human and environmental communities is paramount. Wildland fuel
- 109 mitigation needs to be emphasized to all stakeholders as we work together to address the
- 110 problem. We cannot make significant strides in reducing catastrophic wildland fire risk unless all
- 111 stakeholders participate in creating defensible space. APS has identified the risk and is working
- 112 with partners to create a cohesive strategy to mitigate that risk.
- 113 The approach to mitigating risk at APS is a combination of elements. First is understanding the
- risk and developing a model to prioritize resources. Next is educating and informing the
- 115 communities we serve that mitigation is the key to prevention. Third is implementing a proactive
- approach, such as the Defensible Space Around Poles (DSAP) program to address vegetation at
- 117 the base of utility poles. Last, APS utilizes Integrated Vegetation Management (IVM) practices
- to promote healthy, manageable and sustainable ecosystems within its Right-of-Ways (ROW).
- 119 Furthermore, APS also supports fire management operations that include prescribed fire
- 120 treatments as well as large-scale forest restoration treatments around power line ROW in the
- 121 effort to protect infrastructure and reintroduce fire into the ecosystem to prevent catastrophic
- 122 wildfire events.
- 123 APS is at the forefront of the discussion among utilities in fire mitigation and has developed a
- 124 fire-risk model to track risk based on available fuels and fire history. In addition, we have created

125 employee training to prepare for wildland fire safety while working in the field. This includes

- 126 wildfire preparedness levels which provide situational awareness information to employees,
- 127 contractors and utility partners.
- 128 Within our strategic framework at APS, our mission is to generate and deliver reliable electric
- 129 power and related services to our customers with a respect for the land founded upon sound
- 130 principle to support the diverse ecosystems across Arizona safely and efficiently.

131 **4. Wildfire Mitigation Challenges**


132 With continued growth and expansion across the state, wildland-urban interface areas across

APS service territory have also expanded, creating greater exposure to APS. With a surging

134 population growing into what was once wildland areas, APS's footprint also increases — causing

- the potential for wildland fire impact. Identification and prioritization of high fire risk areas is
- 136 vital to successful fire mitigation and long-term planning.

137

138 Figure 1. Map depicting the APS Service Territory

139 4.1. Arizona's Forest Ecosystem and Landscape

140 Arizona is a state full of diverse landscapes. The diversity of Arizona's forests ranges from

141 riparian gallery forests traversing the low desert to sub-alpine and montane forests above 9,000

142 feet in elevation (O'Brien, 2002). Forests cover roughly 27% of the state and occupy 19.4

143 million acres. These forests are comprised of 37 species of coniferous and hardwood trees. The

144 majority of forestland is located above the Mogollon Rim with distinct areas scattered

145 throughout the rest of the state. Pinyon-juniper woodlands, defined by the presence of one or

146 more species of pinyon pine (*Pinus spp.*) and juniper (*Juniperus spp.*), are the most abundant

- 147 forest type in Arizona, occupying approximately 14.8 million acres, or 20.3% of the state. The
- rarest and most significant in ecological terms is riparian forest, which occupies less than one-
- 149 half of 1% of Arizona's land. Arizona is also home to the largest contiguous stand of Ponderosa
- 150 Pine in the world spanning the length of the Mogollon Rim.
- 151 Land ownership within Arizona is also quite diverse. Federal and state agencies and Native
- 152 American tribes manage most of the lands. Only a small portion is privately owned. Arizona's
- 153 2010 Forest Action Plan is truly reflective of this diverse land base and draws on the strong
- relationships with many organizations and agencies (DFFM, 2015). This collaborative "all
- 155 lands" approach is critical for successful near-term and long-term outcomes on the landscape.

156 4.2. Arizona's Climate

- 157 Climate describes an area's weather averaged over a period of time. Often, climate is described
- 158 in terms of precipitation and temperature. Five key drivers of climate are: latitude, elevation,
- topography and proximity to large bodies of water, ocean circulation patterns, and atmospheric
- 160 circulation patterns. Altogether, these factors give Arizona an arid to semi-arid
- 161 climate. Arizona's temperatures are generally warmer compared to locations at similar latitudes
- 162 elsewhere. Within the state, topographical influences produce various climate schemes with
- 163 markedly different precipitation and temperature characteristics.
- 164 Although precipitation is possible any time of the year, most of Arizona's precipitation falls
- 165 within two periods, the cool season (December through March) and the North American
- 166 Monsoon (June 15 through September 30). Together, most areas of the state receive 80% or
- 167 more of their typical annual precipitation within these two periods. Annual average precipitation
- totals range from just a few inches in southwestern Arizona up to 40 inches in the White
- 169 Mountains of eastern Arizona.
- 170 Large ranges in daily temperatures are often observed across the state. Daily temperatures vary
- by as much as 40° F between the low desert areas around Yuma to the mountainous areas of
- 172 Flagstaff. Diurnal temperature swings can also be large, especially for locations away from
- developed areas. The effects of the Urban Heat Island are well documented to show urban areas
- 174 experience smaller diurnal temperature swings.
- 175 4.2.1. Arizona Climate Classification
- 176 Climate classifications are used to describe various climates. Classification schemes use different
 177 methodologies and criteria to generalize climatic conditions and/or other correlations.
- 178 For the purpose of the CFMP, Arizona is divided into three climate zones:
- 179 Low Desert: Hot summers, cool winters and precipitation 2 to 10 inches.
- 180 High Desert: Hot summers, cold winters and precipitation 5 to 10 inches.
- 181 Mountainous/Highlands: Warm summers, cold winters and precipitation 10 to 20 inches182 or more.
- 183 Two additional sub-zones describe areas where climate characteristics are less clear, limited in 184 areal extent or beauily influenced by other anomalous factors:
- areal extent or heavily influenced by other anomalous factors:

- 185 Transition: Areas where climate characteristics begin to change from one climate zone to 186 another. These areas may exhibit climate characteristics of multiple zones.
- 187 Microclimates: Small areas where climate conditions noticeably differ from the188 surrounding area.

189 4.3. Arizona's Weather Conditions

- 190 Weather is the set of various elements that are the result of numerous atmospheric conditions,
- 191 patterns and other factors which vary across space and time. Weather focuses on short-term
- atmospheric conditions. In addition to the atmosphere, topography, landcover and the built
- 193 environment can affect local weather conditions.
- 194 Most of the year, westerly atmospheric flow predominates while short-term conditions are
- influenced by periodic low-pressure troughs and high-pressure ridges. By mid-summer, easterly
- atmospheric flow becomes prevalent, indicating the arrival of the North American Monsoon.
- 197 Basic weather trends and conditions can be assumed from the general atmospheric pattern.
- 198 Troughs are typically associated with cooler temperatures, increased wind speeds and potential
- 199 for precipitation. Ridges are typically associated with warmer temperatures, afternoon breezes
- 200 with enhanced diurnal/topographic influences. However, deviations from these assumptions do
- 201 occur as actual weather conditions are affected by many other atmospheric properties and 202 interactions
- 202 interactions.
- 203 On many days, local winds are the predominate surface wind pattern for many locations. These
- winds are influenced by diurnal tendencies, topography and the built environment, with
- 205 implications on local weather conditions such as wind direction, wind speed and temperature.
- Weather outcomes can vary over short distances, even on benign "blue sky" days. Awareness
 and understanding of many factors and their influences on local conditions is essential for fire
 weather.
- 209 4.4. Fire Mitigation Critical Issues
- 210 Arizona's population has grown for decades at a tremendous rate, with expectations for continued growth through mid-century and beyond (World Population Review, 2020). This 211 212 expansion brings people into closer proximity to Arizona's forests, affecting these ecosystems in 213 many negative ways. What were once remote forest wildlands with occasional visitors are 214 becoming backyards and crowded playgrounds to expanding suburban neighborhoods. People 215 migrating from urban areas are often choosing to live within or adjacent to forests and thus face 216 new challenges such as fire, smoke, forest access, water supply, and land use issues. At the same 217 time, distant metropolitan areas continue to increase demand for some of our forest's most 218 precious commodities.
- 219 **5. Wildfire Risk**
- 220

221 5.1. Methodology for Enterprise-Wide Risk Assessment

- 222 The APS Wildfire Risk Assessment Analysis was developed to create a risk-informed decision
- framework to identify overall risk and determine potential mitigation plans and programs. The analysis also addresses the wildfire threat to the APS Transmission and Distribution system
- statewide and prioritizes areas for system improvements and grid hardening.
- 226 The subject matter expertise of APS Fire Mitigation specialists (FMS) and institutional
- 227 knowledge played a key role in interpreting the basis for the framework data to estimate the
- trigger event (TE), consequence (C) and consequence impacts (CI). The FMS relied on three
- 229 main categories and 15 subcategories including historical averages to estimate the TE, C and CI
- 230 values creating the mathematical model for APS Fire Risk Index.
- Each of the three main categories are weighted the same and each subcategory was given a value
- from one to 10 supported by publicly available data from fire-related institutions and land
- 233 managers throughout the southwest.
- The statewide service territory was divided into 10-mile by 10-mile grids capturing all APS
- transmission and distribution lines and assets. Grids were evaluated and assigned a value from
- 236 one to five with .5 increments for nine risk index classifications. Each of the five (sub) categories
- has a point value of one to 10 with a possible total of 50 points, for a total of 150 points for all
- 238 (main) categories. Example: max points: 50x3 = 150 highest rating. The aggregate score rating is
- assigned to each of the 10X10 mile geographic areas throughout the state.

Probability of Ignition (TE)	Probability a Fire will Carry (C)	Fire Impact (CI)
Fire History 9	Suppression Response 2	Community Risk 10
Weather/Climate 5	Fuel & Topography 10	Reliability 10
Fuel Arrangement 7	WUI 10	Environmental Impact 10
High Use Impact 3	Fuel Characteristics 7	Population 5
Fire Use/Rx 7	Fuel Loading 7	Reconstruction 5
(31)	(36)	(40)

- 240
- 241 Figure 2. Example APS Wildfire Risk Assessment scoring.
- 242
- 243 5.2. Fire Risk Assessment
- 244 (TE) 31 + (C) 36 + (CI) 40 = 107- A value of (107) equals a Risk Index (RI) of (4)

Risk Index		
5	134	150
4.5	117	133
4	100	116
3.5	83	99
3	66	82
2.5	49	65
2	32	48
1.5	15	31
1	0	14

Table 1. Scoring index for each risk index and the associated breaks.

245

256

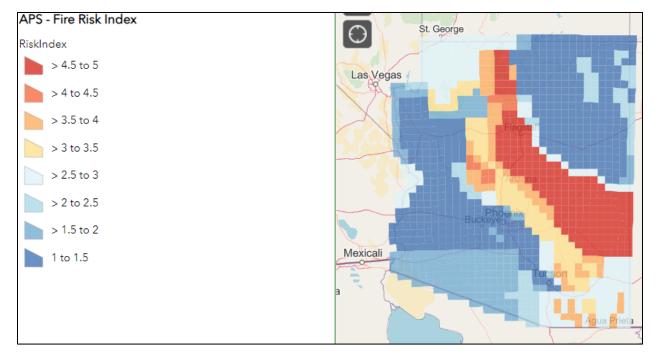
246 This assessment was created to develop a risk model representative of fire risk throughout the

state and the potential impact to the APS T&D system. This is not a short-term analysis that will

change from year to year and is intended to be the base model for long-term risk assessment.

249 This risk assessment is unique to APS and the electrical utility given the threat presented and

250 relevant considerations.


251 This framework and assessment are intended to support objectives and metrics to evaluate risk

252 throughout transmission and distribution. The Fire Risk Index (FRI) is an unweighted scalar

253 function that translates into a range or final FRI. A Delphi scoring system, with input from Fire

254 SMEs around the state, publicly available data and institutional knowledge of fire fuels and

wildland fire science here in Arizona, assisted in development of the FRI.

257 Figure 3. Map representing the APS Fire Risk Index.

- To operationally implement the Risk Index across the APS system, the Fire Mitigation team has grouped Risk Indices into three tiers.
- 260Tier 3 (Risk Index Ratings 4, 4.5, 5) represents the greatest risk and incorporates the most261stringent mitigation measures, including the No-Reclose Strategy.
- 262Tier 2 (Risk Index Ratings 2.5, 3, 3.5) also poses considerable risk and consists of263significant mitigation measures to include the No-Reclose Strategy on most circuits in264this tier level.
- 265Tier 1 (Risk Index Ratings 1, 1.5, 2) is on the low end of the risk spectrum and would266therefore have a reduced number of mitigation measures.
- 267 5.2.1. Ongoing Assessments & Risk Analysis

APS Fire Mitigation developed the Wildfire Risk Assessment based on vegetation conditions throughout the state to assess and implement an overall fire risk assessment for all transmission

and distribution lines on APS systems. Within all line voltage ROW, APS supports the historical

Arizona vegetation components of an open forest with discontinuous crowns and minimal fuel

build-up separated by open spaces with grass-forb-shrub communities. This supports the frequent

- 273 low-intensity fire regime that creates a mosaic pattern of vegetation in Arizona's diverse biotic
- community.
- 275 APS Fire Mitigation along with APS Transmission Operation Engineering has developed Fire

276 Outage Sets. This report contains the technical study, recommended mitigation actions,

277 monitoring elements, and contingencies associated with outages due to wildfire threats. APS has

- 278 identified fire corridors that resulted in pre-contingency path reduction and post- contingency in
- a wildfire.

280 The Outage Data Intelligence (ODIT) system allows APS to pinpoint the root cause of the outage

and determine mitigation measures. The system is used to track reliability performance with

- 282 respect to common industry metrics including SAIFI, SAIDI and CAIDI. Data can be compiled,
- tracked and trended to give clues as to what conditions are affecting the system. Conditions
- 284 include weather, performance, equipment issues, foreign interference, or fire related issues.

APS Distribution Operations also has the following protocol for switching: When in

286 Preparedness Level (3) and greater, APS operations shall notify the Fire Duty Officer of any

287 (relay) line sections (See Fire Risk Index). The No-Reclose Strategy (NRS) applies to all feeders

associated with a risk index of 4 and above as well as most feeders from fire risk index 2.5-3.5.

289 Prior to testing a Transmission or Distribution line section relayed, the circuit shall be reported to

290 the Fire Duty Officer by DOC or ECC Supervisor. Any open relay shall have a complete line

291 patrol done before closing for a test with a patrol following closing of the line section.

292 5.3. Emergency Planning and Preparedness

293 Emergency events are managed at the lowest level of the APS organization possible, within the

scope, capabilities and resources within that level. Escalation occurs when additional resources

- 295 or support is needed to assist in the management of the event. The concept of operations for this
- 296 process is captured in the T&D Emergency Operations Plan (EOP).

297 5.4. Overview of Emergency Operations Plan

298 The T&D Emergency Operations Plan (EOP) is intended to provide a high-level overview of

how an Emergency Event is managed within APS Transmission & Distribution (T&D). The

300 T&D EOP has an application for all emergency events, from single-dock level response up to a

301 T&D Incident Command Center (ICC) activation with full enterprise support at the Corporate

302 Emergency Operations Center (CEOC) level.

303 APS emergency operations adopts an "all-hazards approach" focused on five key areas,

304 Prevention, Mitigation, Preparedness, Response, Recovery. The T&D Hazard & Vulnerability

305 Assessment (HVA) has identified the following top 10 items, based on the compilation and

306 prioritization of the T&D Business Unit HVAs. The EOP contains an Emergency Response and

307 Recovery Plan (ERRP) for each hazard to provide guidance for line of business level response.

6. Metrics and Underlying Data

3096.1. Description of program targets

310 Program targets are measurements of activity used to show progress toward reaching the

311 objective of reducing wildfire risk. The Fire Mitigation team tracks several program targets

312 including Defensible Space Around Poles, Hazard Trees and System to Ground/Ground to

- 313 System fires.
- 314 The Defensible Space Around Poles targets approximately 80,000 poles across distribution
- feeders with a Fire Risk Index of 1.5 or greater. 100% of these poles will be inspected on a two-

316 year cycle beginning in 2024 (all were previously inspected on a three-year cycle). On average,

317 80% of the subject poles will require treatment. For quality control, a minimum of 20% of

318 treated poles are audited. Tracking of implementation is accomplished through ArcGIS mapping

319 and applications.

320 The Hazard Tree program targets line sections across T&D mid-routine cycle or those that have

- been recently impacted by wildfire and fall within a conifer vegetation type. These line sections are inspected for tree strike potential identification for removal. All hazard trees identified are
- mitigated within the calendar year. A minimum of 50% of hazard tree removals are audited for
- 324 quality control.
 - 325 All wildfires within a 10-mile radius of APS infrastructure are tracked. Those that are
 - determined to be System to Ground fires are further tracked in reports and conveyed to System
 - 327 Health and Standards departments. The goal is to track and define any high-risk trends that may
 - 328 be causing ignitions. Wildfires that impact APS infrastructure (Ground to System) are also
 - 329 tracked. Wildfire tracking improves awareness, defines trends and aids in APS metrics.
 - 330 6.2. Lessons Learned: Tracking Metrics in 2024

331 APS fire mitigation is committed to reducing the fire risk from two categories of wildfire as

defined here. System to ground (STG) fires are those with an ignition source related to APS

infrastructure. These events are tracked as a metric with year-over-year trends identified. STGs

are reported by the Fire Mitigation team to the System Health and Standards department with

additional business groups included as needed. Equipment failure is investigated, and a

- determination of a system threat is identified for mitigation. Through this process, APS can
- 337 identify equipment throughout the service territory with a history of potential failure and replace
- 338 failed equipment with improved options.
- 339 System to Ground Fire: Defined as an ignition of ground fuels, flame or stage of combustion
- 340 propagated by APS equipment or related system operations. Fire size is tracked in acres i.e.,
- $341 \quad 1/10, \frac{1}{4}, \frac{1}{2}$ to one acre or greater.
- 342
- 343 STG data is tracked and classified the following Growth Phases:
- Incipient Phase: Limited burn area to the point where sparks/ignition source contacted the ground and may have self-extinguished or suppressed.
- 346 2. Growth Phase: A fire that has grown beyond the incipient phase.

347 The other wildfire category APS monitors are Ground to System (GTS) fires; fires that have an

ignition source unrelated to APS utility infrastructure but cause damage or impact to APS. This

349 metric allows APS to identify potential hardening strategies to improve system resilience in the

- 350 event of an encroaching wildfire. This metric is highly variable based on extraneous conditions
- but is essential in determining best management practices for system hardening and fire impact.

352 **7. Baseline Ignition and Wildfire Risk Exposure**

353 7.1. Common Weather Regimes

Weather conditions in the Southwest are typically hot, dry and windy. These conditions affect fire danger, with key weather elements of temperature, relative humidity and winds frequently near critical thresholds for prolonged periods. Changes in short-term weather trends are often subtle and difficult to detect, but even a slight departure from normal can have significant implications on daily fire weather concerns and fire danger.

359 Three weather regimes are known to exacerbate fire weather conditions: Meridional Ridge –

360 Southwest Flow pattern, Short-Wave Train pattern, and the Zonal Ridge pattern. The fire danger

361 peaks when a shortwave trough passes over or slightly to the north of the region. This occurs

- 362 every spring and fall when Arizona is typically dry and windy.
- 363 However, Critical Fire Weather can occur any time of year in Arizona.

364 7.2. Current baseline state of service territory and utility

365 The APS service territory is diverse in ecotone, vegetation type and the challenges associated

- 366 with delivering electrical services to customers safely and reliably. APS continues to proactively
- 367 plan for a changing environment common to electrical utilities from generation, transmission and
- 368 distribution of service in combination with a growing population in the state of Arizona.
- 369 Balancing fire mitigation, advanced grid technologies, green production of energy, grid
- 370 expansion, and planned maintenance has been paramount to addressing these challenges.
- 371 7.3. Fire ignitions tracked by district
- 372 Wildfire impact mitigation efforts within APS include tracking reports of wildland fires from
- 373 federal, regional and local resources within 10 miles of APS service territory. Areas and feeders

- of high fire risk have been identified through risk analysis to determine the most vulnerable areas
- 375 of APS service territory based on a multitude of variables including fuel loads near and around
- feeders, receptibility of fuels, population, frequency of fires, and others. These high-risk feeders
- will be enabled with a no-reclose strategy and service to mitigate any potential for fire ignitions
- caused by the APS system.
- Overall, APS has 13 operational districts that encompass the state of Arizona. Since 2020, 2,260
- 380 fires have been tracked and mapped throughout the districts by the FMT at APS. As an example,
- 381 16.79% of all fires tracked were mapped within the Coconino district. More so, Coconino district
- also contains 70 out of the 249 high-risk feeders in the state, with 58 of the feeders being in the
- highest risk index (5). The Coconino National Forest, within the district, also contains a portion
- 384 of the largest, contiguous ponderosa pine forest, also incorporating the Kaibab National Forest.
- 385 In comparison, the district with the third highest frequency of fires is Prescott, which is
- 386 composed of the Prescott National Forest and 52 high-risk feeders. Table 2 shows the number of
- fires tracked by the FMT in each district since 2020. Common characteristics of the highest risk
- districts include frequency of fires, densely forested or vegetated areas, higher population,
- 389 feeders in an area with a higher risk index, and feeders with a combination of any of the four.

	2020	2021	2022	2023	Total Fires by District	4-year Frequency (%)	4-year Average
Coconino	150	102	27	114	393	16.79	98
Navajo	40	37	9	35	121	5.17	30
Payson	75	65	22	54	216	9.23	54
Verde	49	36	15	28	128	5.47	32
Prescott	130	120	40	85	375	16.02	94
La Paz	16	13	5	7	41	1.75	10
Yuma	30	25	14	20	89	3.80	22
Wickenburg	10	8	3	12	33	1.41	8
Metro	196	100	27	84	407	17.39	102
Buckeye	36	18	5	28	87	3.72	22
Mountain	81	51	13	43	188	8.03	47
Pinal	57	20	3	25	105	4.49	26
Cochise	57	37	17	47	158	6.75	40
Total Fires	927	632	200	582	2341		

- 390
- 391 *Table 2. Fire occurrence by APS State District.*

392 8. Fire Mitigation Meteorology

393 8.1. Fire mitigation meteorology support

Meteorology at APS considers fire mitigation throughout the calendar year and provides a multitude of weather support and intel related products across the enterprise. Issuance of semiweekly weather and fire weather briefings discuss weather conditions pertaining to the next seven days. The briefings contain a high-level synoptic weather overview, a summary of primary weather hazards and impacts, routine forecast graphics, and links to original forecast documents and an internal weather support webpage.

- 400 8.2. Key weather elements, impacts and hazards
- 401 Consideration of several weather elements and their importance across the APS enterprise is
- 402 essential. Weather awareness requires an understanding of how weather elements affect the
- 403 various roles and scopes across the enterprise. A weather threat index is used to communicate

404 the potential for adverse weather conditions to impact various aspects of the enterprise by

405 **APS district.** For Fire Mitigation, the potential for critical fire weather is crucial, with careful

406 consideration of temperatures, winds, moisture, precipitation, thunderstorms, lightning, sky

- 407 conditions, winter weather, and other elements as needed.
- 408 8.3. Graphical and Narrative Forecasts

409 Forecasts depicting weather implications on circuits by APS district including Fire Weather,

- 410 Thunderstorm, Winter Storm, Temperature and Non-Storm Wind Outlooks issued semiweekly;
- 411 and other specialized forecasts, including spot forecasts, as needed.
- 412 8.4. Additional support functions
- 413 8.4.1. Fire mitigation meteorology SharePoint
- 414 Internal webpage with access to current and past forecasts, outlooks, analysis, and other weather 415 support. SharePoint also contains the Weather Outlook and Situational Awareness Dashboard.
- 416 8.4.2. Weather outlook and situational awareness dashboard

417 The Weather Outlook and Situational Awareness Dashboard (WOSAD) is an ESRI dashboard

418 containing several publicly available weather observations, analyses and outlooks to provide

419 additional top-level weather support as needed. All products are produced, shared and managed

420 by the National Oceanic and Atmospheric Administration (NOAA) and National Weather

- 421 Service (NWS) for public use. Only the WOSAD display is managed by Fire Mitigation
- 422 Meteorology.

423 8.5. Situational awareness and forecasting

424 Semi-weekly internal weather and fire weather forecasts and periodic seasonal weather outlooks

425 and reviews are vital to enterprise situational awareness. The WOSAD also provides access to

426 NOAA radar and several NOAA weather forecasts, outlooks and observations. The FM

- 427 Meteorology SharePoint site serves as a central access hub for current and past weather support.
- 428 At times, business operations may require detailed short-term weather support to be
- 429 prioritized. Examples of support include spot forecasting, nowcasting, weather radar analysis,

430 and current weather observations.

431 **9. Wildfire Mitigation Strategy**

432 The APS fire mitigation strategy can be categorized into three elements; prevention, mitigation

433 and response. Each element plays a crucial role in reducing the overall risk of wildfire to APS.

434 Within each of these elements are a variety of policies, tactics and programs designed to prevent

the occurrence of wildfires, minimize the impacts of wildfire and create a common operating

436 picture across APS business units on how to respond to wildfire and wildfire risk. The APS fire

437 Mitigation team provides wildfire subject matter expertise to the company and oversees the Fire

438 Mitigation programs such as the Defensible Space Around Poles program and the Hazard Tree

439 program.

- 440 **Prevention** prevention refers to the efforts made within APS to eliminate wildfires from
- 441 starting all together. Examples include the No-Reclose Strategy (NRS), the Hazard Tree program
- and the APS District Preparedness Levels and work restrictions during elevated fire conditions.
- 443 APS Forestry Fire and Resource Management also works year-round maintaining APS Rights-
- 444 of-Ways (ROW) to prevent vegetation from contacting lines that could cause not only outages,
- 445 but wildfires.
- 446 **Mitigation** mitigation refers to efforts made within APS to minimize the impacts of wildfires.
- 447 Mitigation efforts include programs like Defensible Space Around Poles (DSAP) which removes
- 448 combustible fuels from around equipment poles and reduces the chances of a pole burning. The
- 449 APS Fire Mitigation team also provides on-scene representation (fire liaison) during a wildfire
- 450 incident to coordinate efforts with firefighting agencies which provides safety for firefighters and
- 451 leads to faster restoration times.
- 452 **Response** response refers to actions taken across APS before, during and after a wildfire. APS
- 453 and the Fire Mitigation team monitor conditions and respond by assigning appropriate
- 454 preparedness levels to each district. During an active wildfire, APS monitors and coordinates
- 455 with on-scene personnel to determine the need to stand up the APS Incident Management team
- 456 and assess needs for restoration.
- 457 9.1. Risk assessment and mapping
- 458 The Fire Risk Index (FRI), as previously described in Chapter 4, is the base model for long-term
- 459 risk assessment across the APS T&D system. The analysis was developed to create a risk-
- 460 informed decision framework to identify overall risk and determine potential mitigation plans
- and programs. The Fire Risk Index is further used to ascertain priorities within mitigation
- 462 programs. This is accomplished with ArcGIS mapping. The FRI is depicted as a layer in ArcGIS
- and can be cross referenced with other layers or features to determine the applicable risk and
- 464 assist in decision making based on that risk.
- 465 9.2. Wildfire Call, Plan and Respond (CPR)
- 466 Wildfire Call, Plan and Respond is the protocol APS employees and contractors are to take in the
- 467 event they encounter a wildfire. The protocol is centered on calling and reporting the incident,
- 468 planning for worst case scenario and responding appropriately. A description of the process is
- 469 listed in the below figure. This protocol is to be reviewed during pre-job briefings when in
- 470 preparedness level 2 and greater ensuring all field workers are aware of the process.

	WILDFIRE CPR	
CALL FOR HELP	PLAN FOR THE WORST-CASE SCENARIO	RESPOND APPROPRIATELY
 If you come across a fire, or encounter a situation where a fire has been started by APS equipment, call 911 and DOC. Regardless of what you think your actions can do to mitigate the fire, always call and report four things: Location, Fire Conditions, Your Actions, Needs (LCAN Report). 	 Always consider the worst thing that can happen, and what you can do to protect yourself and others. No equipment or personnel is worth the risk of being trapped. Continually be aware of your surroundings. Consider Communications and Escape Routes. 	 Consider the flame length and weather conditions. An active fire is NOT defendable by APS personnel Employees are not to attempt extinguishing an active fire that is beyond the Incipient Phase. APS is not a fire suppression unit. Know when it is safer to leave the area.

471

472 *Figure 4. Wildfire CPR diagram.*

473 9.3. Wildland indices as metrics for preparedness levels

474 The APS Fire Mitigation program relies on scientific data collected to help predict potential fire

475 danger and the threat to the grid. Eight important calculations are utilized in assessing current

476 Preparedness Levels and are provided to APS by the Public Land Manager. A short description 477 of each index is presented below

477 of each index is presented below.

478 Ignition Component (IC) is a rating of the likelihood that a firebrand will ignite a fire if it lands
479 on a receptive fuel bed. This metric provides an understanding of the potential for ignition based
480 on current temperatures and fuel moisture content. Ignition component data is derived from the
481 Interagency Dispatch Centers as well as available on the Southwest Coordination Center

482 (SWCC) website.

483 **7-Day Fire Potential** outlook is an indicator of trends and expected conditions over the next
 484 week and is largely a function of fuel conditions, weather and resource availability.

Fire Weather Forecast including winds, relative humidity and temperature are indicators of
 potential fire behavior and are available from the National Weather Service.

487 The Energy Release Component (ERC) is based on the estimated available energy released per

488 unit area in the flaming front of a fire. The day-to-day variations of the ERC are caused by

489 changes in the moisture contents of the various fuel classes, including the 1,000-hour time lag

490 class. The ERC is derived from predictions of the rate of heat release per unit area during

- 491 flaming combustion and the duration of flaming.
- 492 **Dead Fuel Moisture 1000 hr.** is an indicator of long-term drought and overall fuel conditions.

493 Fuel moisture content is the water content of a fuel particle expressed as a percent of the oven

494 dry weight of the fuel particle. This measurement is representative of the fuels susceptibility to

495 carry fire, and the probability the fuel will ignite given an ignition source.

496 6-10 Day Precipitation Outlooks captured from the Climate Prediction Center are considered as
 497 well for expected conditions and potential for progression through the preparedness levels.

498 **Publicly Managed Lands Fire Restrictions** is the current fire restriction level by federal, state

- and municipal agencies. The current restriction and the associated industrial plan are
- 500 communicated during zone restriction calls and can be found on the Southwest Area Fire
- 501 Restrictions Dashboard.
- 502 Fire Danger Rating is the overall national fire danger rating system (NFDRS) current rating for
- 503 publicly managed lands and is a part of the decision matrix. NFDRS is a system that allows fire
- 504 managers to estimate today's or tomorrow's fire danger for a given area and links an
- 505 organization's readiness level to the potential for fire conditions. NFDRS Adjective ratings range
- 506 from low to extreme.

507 9.4. District preparedness levels

- 508 In close coordination with state and federal agencies, APS Fire Mitigation specialists establish
- 509 Preparedness Levels throughout the calendar year to proactively prepare and respond to wildfire
- 510 incidents. Preparedness Levels are dictated by fuel and weather conditions, current and expected
- 511 fire activity and potential impact to APS systems and stakeholders. This document does not
- 512 replace or supersede the APS ConvergePoint document "Elevated Fire Conditions." It is
- 513 intended to document how the Preparedness Levels are determined and outline the workflow's
- 514 complexity. Not all criteria within each level must be met to warrant a shift in level but are
- 515 intended to be guidelines for decision making. The decision support matrix is used with subject
- 516 matter expertise to warrant a change in preparedness level.
- 517 The Preparedness Levels are evaluated at least monthly, and the frequency of evaluation
- 518 increases as conditions warrant. Evaluation of current wildfire indices is utilized for both
- 519 increases and decreases in the Preparedness Level. Eight wildfire indices are used in evaluating
- 520 the current Preparedness Level for each APS geographic district. A decision support matrix was
- 521 created to document changes in Preparedness Levels throughout the year in which all indices are
- 522 monitored and utilized to calculate the appropriate Preparedness Level. Data used in evaluations
- are derived from publicly available sources including Southwest Coordination Center (SWCC),
- 524 National Interagency Fire Center (NIFC) and APS proprietary information. Each wildfire metric
- is evaluated and scored from one to five with five representing the greatest risk, the cumulative
- 526 score of all metrics is used to determine the current Preparedness Level for each APS District.

	District Preparedness Level (DPL)
Ignition Component: 0-19% = 1	20-39% = 2 40-69% = 3 70-79% = 4 >79% = 5
Fire Weather: Below Normal = 1	Normal = 2 Above Normal = 4 Extreme = 5
7 Day Fire Potential: No Data = 1	Little Risk = 2 Low Risk = 3 Moderate Risk = 4 High Risk Triggers = 5
ERC Percentile: 0-24% = 1 25-4	9% = 2 50-89% = 3 90-96% = 4 >96% = 5
Fuel Moisture (1000Hr): >20% = 1 1	3-20% = 2 9-12% = 3 6-8% = 4 < 6% = 5
Precipitation (6-10 Day Outlook): Likely	Above = 1 Leaning Above = 2 Near Normal = 3 Leaning Below = 4 Likely Below =
NFDRS Fire Danger: Low = 1	Moderate = 2 High = 3 Very High = 4 Extreme = 5
Publicly managed Lands Fire Restrictions:	Stage 1 = 3Stage 2 = 4Closure = 5

528 Figure 5. Decision Support Matrix for APS Preparedness Level determination.

- 529 The Preparedness Levels range from one to five, with five being the highest level and
- 530 representative of the most extreme fire conditions. Each Preparedness Level has specific
- 531 management directions and operational protocols. As the Preparedness Levels change, several,
- 532 but not all, indicators must be met. The current District Preparedness Level shall meet any land
- agency requirements within the APS transmission and distribution system to ensure safety and
- 534 compliance. The APS Preparedness Level is set per each APS district. The 13 APS districts vary
- 535 geographically across the state by fuels, topography and weather conditions, and therefore are
- 536 analyzed individually.

537

- Figure 6. Example representing APS State Districts in which each has an associated p-level
 assigned.
- 540 The current APS District Preparedness Level for each district is found on the APS Fire
- 541 Awareness Dashboard, Fire Mitigation SharePoint and is communicated via email anytime there
- 542 is a change in the Preparedness Level.

543 9.5. Preparedness Level Work Restrictions

- 544 The following descriptions represent the APS Preparedness Levels, the associated work
- 545 requirements and potential impacts to work plans. This is not all inclusive and additional
- requirements may be needed to meet the standard of exemptions by Publicly Managed Land
- 547 Agencies in Arizona. APS Lands department and Fire Mitigation may need to secure and
- 548 facilitate exemptions from Publicly Managed Lands to perform emergent work in the event of
- 549 Elevated and Extreme fire conditions. Each APS district will always be assigned a Preparedness
- 550 Level and APS employees and contractors shall know the current Preparedness Level and
- requirements for the district in which they are working. APS employees and contractors acting
- on behalf of APS shall meet these requirements:

553	Preparedness Level – 1 Normal Operating Conditions
554	Low Fire Conditions
555 556 557	 No industrial plan requirements Maintain situational awareness Preparedness Level – 2 Industrial Plan A
558	Increasing Fire Conditions
559 560 561 562 563 564 565 566 567 568 569 570	 Increasing awareness and preparation Fire mitigation tools must be present on vehicles and job sites - the purpose of the tools is: 1) mitigate fire potential by removing fuels with hand tool and/or wetting area 2) extinguish an incipient fire 2 - 10# ABC fire extinguishers 1 - backpack pump 5 - gallon minimum of additional water 1 - hand tool (round point shovel) per crewmember Dependable form of communication (cell phone or radio) Review Wildfire CPR during pre-job briefs No fire guard required, should be considered Preparedness Level - 3 Industrial Plan B
571	Elevated Fire Conditions
572 573 574 575 576 577 578 579 580 581 582 583	 Fire mitigation tools must be present on vehicles and job sites 2 - 10# ABC fire extinguishers 1 - backpack pump 5 - gallon minimum of additional water 1 - hand tool (round point shovel) per crewmember Dependable form of communication (cell phone or radio) Review Wildfire CPR during pre-job briefs Fire guard required on all job sites No-Reclose Strategy (NRS) enacted No smoking Restrictions and closures may influence work plans Preparedness Level – 4 Industrial Plan C
584	Very High Fire Conditions
585	 Fire guard required on job sites

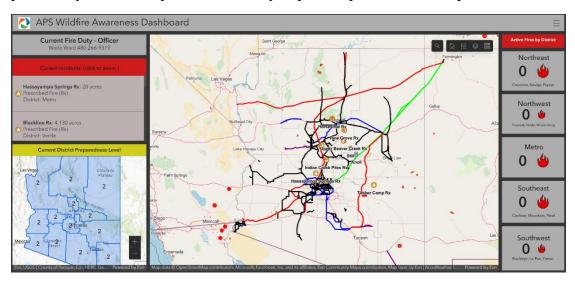
- Emergent work as necessary
- Pre-Emergent work shall be completed prior to 0900 and/or resume at 2000 hours
- Emergent and pre-emergent work, every effort shall be made to give crew locations

589	• All other work shall stop until approval is obtained by T&D leadership during the Work
590	Approval Review Meeting (WARM) and possible Lands department approval
591	• Fire mitigation tools must be present on vehicles and job sites
592	\circ 2 – 10# ABC fire extinguishers
593	\circ 1 – backpack pump
594	\circ 5 – gallon minimum of additional water
595	\circ 1 – hand tool (round point shovel) per crewmember
596	 Dependable form of communication (cell phone or radio)
597	Review wildfire CPR during pre-job briefs
598	No-Reclose Strategy (NRS) enacted
599	No smoking
600	Restrictions and closures may influence work plans
601	Preparedness Level – ${f 5}$ Industrial Plan ${f D}$
602	Extreme Fire Conditions
603	• Fire guard required on job sites
604	• Emergent work as necessary
605	• With pre-approval, specific operations may continue with additional mitigation measures
606	in place and approval from APS Management and Fire Mitigation team during the Work
607	Approval Review Meeting (WARM) and possible Lands Department approval.
608	• Emergent and pre-emergent work, every effort to shall be made to give crew locations
609	• Fire mitigation tools must be present on vehicles and job sites
610	\circ 2 – 10# ABC fire extinguishers
611	\circ 1 – backpack pump
612	\circ 5 – gallon minimum of additional water
613	\circ 1 – hand tool (round point shovel) per crewmember
614	• Dependable form of communication (cell phone or radio)
615	Review Wildfire CPR during pre-job briefs
616	No-Reclose Strategy (NRS) enacted
617	Restrictions and closures may influence work plans
618	No smoking
619	9.6. Red Flag Standing Order

APS has adopted a standing order in which additional precautions are put in place during red flagwarning periods as defined by the SWCC Annual Operating Plan in conjunction with the NWS.

A Red Flag Warning is defined as a critical combination of dry fuels and weather conditions that support extreme fire behavior. Red Flag Warnings are issued to identify Red Flag events which are highly likely, or imminent, usually within the following 12–48-hour period. Fire Weather Watches are issued to identify the elevated threat of similar conditions during the following 18– 96-hour period. Specific objective criteria for Red Flag events are listed below. Fire management may also request that Red Flag Warnings or Fire Weather Watches be issued under extenuating circumstances (i.e., fuel conditions so severe that marginally windy and dry conditions would

629 lead to extreme fire behavior).


- 630 Criteria: standardized criteria for issuance of Fire Weather Watches and Red Flag 631 Warnings in the Southwest Area are a combination of weather and fire danger ratings.
- ⁶³² **In the absence of overriding input from fire management personnel, a Red Flag event is
- 633 defined by the following conditions occurring simultaneously for three or more hours across any
- 634 portion of a fire weather zone:
- 635 1) 20-foot winds sustained 20 mph or greater, or gusting to 35 mph or greater
- 636 2) Relative humidity of 15% or lower
- 637 3) NFDRS adjective fire danger rating of "High" or higher
- 638 A Red Flag Warning is indicative of extreme fire weather conditions and additional precautions
- 639 will be taken by APS operations regardless of current Preparedness level (P-level) in districts
- 640 where a Red Flag Warning has been issued. When a Red Flag Warning is issued, the following
- 641 measures shall be taken for the entire day (6:00am 11:59pm) within the district(s) affected by
- 642 the Red Flag Warning:
- All vehicles shall have all P2-equivalent fire mitigation tools, including fire extinguishers, backpack pump, hand tool, and an extra five gallons of water.
- All Non-emergent Field Work (includes Pre-emergent Field Work and Planned Field Work) shall be deferred until after the red flag warning has expired (11:59 PM)
- Emergent Field Work can occur with notification from maintenance department to T&D
 Leadership including the local Manager and Fire Mitigation and must include a fire
 watch for 3 hours post completion of the work.
- DOC Operations or ECC Operations shall notify via email the Fire Mitigation Duty
 Officer of any line trip or recloser operation. If there is known line down, or fire reported, an immediate phone call will be made to the Fire Mitigation Duty Officer
- Any line trip resulting in an open circuit shall have a complete line patrol completed before closing for a test.
- Red Flag Warnings will be communicated via email from the Fire Mitigation team to thefollowing DLs:
- 657 Fire Notification
- 658 DOC Shift Supervisors
- 659 ECC Shift Supervisors
- 660 T&D Leadership
- 661 9.7. APS Wildfire Awareness Dashboard

The APS Wildfire Awareness Dashboard is used to track all current incidents in the state ofArizona with information populated from Arizona Fire Dispatch Centers and is updated as

- 664 incidents develop. This information provides real-time analysis of the potential impact to the
- APS system and situational awareness to APS employees and contractors working in the field.
- The dashboard allows APS operations to make informed decisions on the wildfire risk to any
- aspect of the APS grid or support systems. The APS Wildfire Awareness Dashboard also
- 668 contains real-time weather station data, radar and lightning strike data to assist with informed
- decision making. The current APS Fire Mitigation Duty Officer is listed on the dashboard and
- 670 updated daily.
- 671 As reports come from the dispatch centers, the Fire Mitigation Duty Officer determines the threat 672 level of each incident. Threat levels are as follows:
- For Information Only: No threat currently associated with this incident
- **Potential**: Within 10 miles and DO is monitoring
- **Credible**: Within 10 miles and greater likelihood to impact APS infrastructure
- **Immediate**: Currently impacting APS infrastructure

Impacts include but are not limited to: May burn into ROW, may cause outage, may require apatrol, may burn down poles/towers, may require response, smoke impacts.

679

680 Figure 7. Example of APS Wildfire Awareness Dashboard

681 9.8. Situational awareness and forecasting

682 Semi-weekly internal weather and fire weather forecasts and periodic seasonal weather outlooks

and reviews are vital to enterprise situational awareness. The Weather Outlook and Situational

684 Awareness Dashboard (WOSAD) also provides access to real-time National Oceanic and

- 685 Atmospheric Administration (NOAA) NOAA radar and several weather outlooks. The FM
- 686 Meteorology SharePoint site serves as a central access hub for current and past weather support.

687 At times, business operations may require detailed short-term weather support to be prioritized.

688 Examples of support include spot forecasting, nowcasting, weather radar analysis, and current

689 weather observations.

690 9.9. Camera network and weather station integration

- 691 A small network of pan-zoom-tilt cameras and weather stations are in a pilot project to test the
- 692 feasibility of acquiring detailed weather and fire weather conditions pertaining to APS initiatives.
- Looking ahead to 2024 APS will begin deploying fifteen new cameras and weather stations
- across the service territory.
- The cameras are intended for the Fire Mitigation team to gather situational awareness withregards to wildfires and infrastructure.
- Weather stations will be mounted on poles and around other APS equipment to provide real time
 weather observations. Since publicly available weather data is incredibly sparse, especially
 related to APS infrastructure, these observations will provide the Fire Mitigation team the ability
 to monitor what weather conditions are impacting APS equipment at any given moment. This
 will provide the ability to inform the Duty Officer (DO), Incident Command, APS meteorology,
- and other decision makers regarding ongoing hazardous weather conditions to the APS system.
- 703 9.10. Fire science and climate adaptation

Moving forward with implementation of fire science modeling, a Weather Threat Index, Fire
 Threat Index and identification of key weather parameters will help APS decision makers with

- the protection of life and property among the APS enterprise and the public.
- 707 9.11. Fire Threat Index
- 708 The Fire Threat Index (FTI) incorporates fire weather parameters including maximum
- temperature, minimum temperature, maximum relative humidity, minimum relative humidity,
- vind direction, wind speed, wind gusts, live fuel moisture, dead fuel moisture, and the potential
- 711 for thunderstorms. Additionally, many indices will be considered including the Keetch-Byram
- 712 Drought Index (KBDI), Energy Release Components (ERCs), Burning Index (BI), Ignition
- 713 Component (IC), the National Seven-Day Significant Fire Potential Forecast, the National Fire
- 714 Danger Rating System (NFDRS), the United States Geological Survey (USGS) Wildland Fire
- 715 Potential Index (WFPI), and the Severe Fire Danger Index (SFDI). Each of these will be
- weighted to quantify the risk associated with the hazards of wildfire to APS and the public and
- 717 the District Preparedness Levels.
- 718 9.12. Fire Growth Potential (Fire Rate of Spread)
- The Fire Growth Potential (FGP) will combine the Burning Index (BI) and Wind Gusts (WG) to
- assist in making operational decisions that will reduce the fire threat and its associated risks. This
- tool converts environmental, statistical and scientific data into an easily understood forecast of
- the short-term fire threat that could exist for different geographical areas in the APS service
- territory.

724 9.13. Weather Threat Index (Ongoing Weather Forecast)

The Weather Threat Index (WTI) communicates the daily potential for hazardous weather and/or
 weather-related impacts resulting from forecast weather conditions. The WTI output is a sliding

- scale derived from weather observation and forecast inputs. These values assist in producing theBOW and EOW forecasts.
- 728 BOW and EOW forecasts.
- 729 9.14. Fire Potential Index
- 730 The Fire Potential Index (FPI) will be an aggregate score of the Fire Growth Index, and fire
- 731 modeling technology (WFA) to determine the fire potential for operational protocols. This will
- include outputs for WFA modeling, Burn Index and Wind speeds and wind gusts.

733 10. Operations during elevated fire conditions (crews and contractors)

- 735 10.1. Field Operations during elevated fire conditions
- The APS mission is to serve customers with clean, reliable and affordable energy. APS
- violation of the term of term
- is focused on safety and reliability metrics to ensure protection for both our employees,
- 739 customers and all stakeholders.
- 740 APS recognizes in times of extreme fire conditions, measures need to be put in place to protect
- Arizona's natural resources and the infrastructure, including public safety and national security
- 742 interests.
- APS supports measures implemented to protect Arizona's forests, rangelands and water ways
- such as restrictions and closures. During these times, APS increases situational awareness and
- support to prevent fire ignitions. To provide safe and reliable electricity, there is a constant need
- for emergent and pre-emergent work that must be completed every day to maintain safe grid
- 747 operation. A brief description of emergent and pre-emergent work is listed below.

748 What is "pre-emergent" work?

- Work that shall be completed because of an operational situation that poses a threat to the safetyand reliability* of the grid in the immediate future.
- 751 Example: (not limited to, or exclusive to the following)
- A broken crossarm needs to be replaced before a wire contacts the ground, causing a fault or anypotential unsafe conditions to the electric grid.

754 What is "emergent" work?

- Work that shall be completed because of an operational situation currently posing a threat to the safety and reliability* of the grid.
- 757 Example: (not limited to, or exclusive to the following)
- Wire on the ground or any equipment issues that could result in unsafe conditions or service tothe electric grid.
- 760 *Arizona Corporation Commission (ACC), obligation to serve R14-2-903 CC&N

761 Preparedness Level – 3 Industrial Plan B

- 762 Elevated Fire Conditions
- Fire mitigation tools must be present on vehicles and job sites
- 764 \circ 2 10# ABC fire extinguishers
- 765 \circ 1 backpack pump
- $766 \circ 5$ gallon minimum of additional water
- 767 o 1 hand tool (round point shovel) per crewmember
- 768 Dependable form of communication (cell phone or radio)
- Review Wildfire CPR during Pre-Job Briefs
- Fire guard required on all job sites
- No-Reclose Strategy (NRS) enacted
- No smoking
- Restrictions and closures may influence work plans

774 Preparedness Level – 4 Industrial Plan C

- 775 Very High Fire Conditions
- Fire guard required on job sites
- Emergent work as necessary
- Pre-emergent work shall be completed prior to 0900 and/or resume at 2000 hours
- Emergent and Pre-emergent work, every effort shall be made to give crew locations
- All other work shall stop until approval is obtained by T&D leadership during the Work
 Approval Review Meeting (WARM) and possible Lands Department approval
- Fire mitigation tools must be present on vehicles and job sites
 - \circ 2 10# ABC fire extinguishers
- $\circ 1 backpack pump$
 - \circ 5 gallon minimum of additional water
 - \circ 1 hand tool (round point shovel) per crewmember
 - Dependable form of communication (cell phone or radio)
- Review Wildfire CPR during pre-job briefs
- No-Reclose Strategy (NRS) enacted
- 790 No smoking

783

785

786 787

• Restrictions and closures may influence work plans

792 Preparedness Level – 5 Industrial Plan D

- 793 Extreme Fire Conditions
- Fire guard required on job sites
- Emergent work as necessary
- With pre-approval specific operations may continue with additional mitigation measures
 in place and approval from APS Management and Fire Mitigation Team during the Work
 Approval Review Meeting (WARM) and possible Lands Department approval.
- Emergent and pre-emergent, every effort to shall be made to give crew locations

800	• Fire mitigation tools must be present on vehicles and job sites
801	\circ 2 – 10# ABC fire extinguishers
802	\circ 1 – backpack pump
803	\circ 5 – gallon minimum of additional water
804	\circ 1 – hand tool (round point shovel) per crewmember
805	• Dependable form of communication (cell phone or radio)
806	Review Wildfire CPR during Pre-Job Briefs
807	No-Reclose Strategy (NRS) enacted
808	Restrictions & closures may influence work plans
809	• No smoking
810	
811	To ensure safety during preparedness level 4 and preparedness level 5, APS employees and
812	contractors will continue to provide safe and reliable delivery of electricity by increasing
813	mitigation measures. All work will be evaluated during the Work Approval Review Meeting
814	(WARM) for additional mitigation measures including, but not limited to the following:
815	Additional fire guard measures taken
816	 Work plan and project adjustment
817	
818	 Increased communications to the public and stakeholders
819	 One point of contact with APS fire mitigation staff
820	• Check in check out protocol with publicly managed lands

• Check in check out protocol with publicly managed lands

821

822 The WARM will occur during preparedness levels 4 and 5 and consist of representatives from

823 APS Fire Mitigation team, Transmission and Distribution Leadership as well as others. This

824 meeting will also serve as an opportunity to determine priority of work and additional mitigation

825 measures required to continue operation of the grid.

826 10.2. Fire Guard in Industrial Plan Restrictions

827 A fire guard is a component of the APS Preparedness Levels. The fire guard is not dependent on 828 land ownership and is required whether work is occurring on agency or private land throughout 829 the state. While the restriction originates from the Forest Service, APS has adopted it across the 830 entire service territory during Preparedness Level 3 and greater. Given how expansive this 831 restriction is, this document will provide practical guidance.

- 832 • A fire guard is in effect under Industrial Plans B through D (Preparedness Levels 3-5) 833 and during Red Flag Conditions. APS and contract crews shall utilize a fire guard in these conditions. 834
- 835 • An additional 20 gallons of water is required for the fire guard on top of the required five gallons with the fire mitigation tools in (P2). A total of 25 gallons of water is required on 836 837 site with the fire guard.

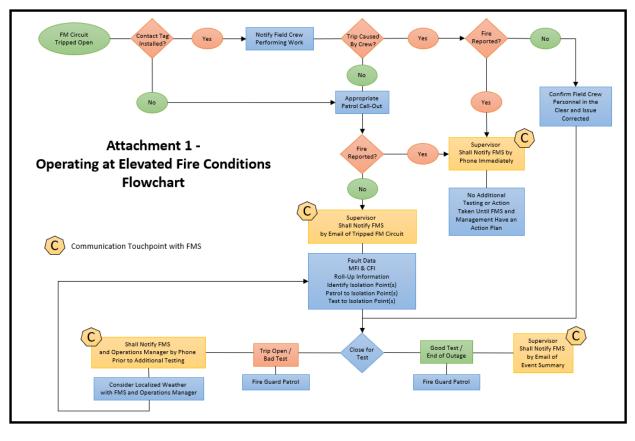
838 The intention of a fire guard is to mitigate the accidental ignition of fuels and the spread of fire

- 839 due to the industrial nature of our work. Embers can smolder for some time without igniting,
- 840 which is why it is important to provide a fire guard and not assume any risk.

- 841 A fire guard consists of:
- Three hours of continual watch after any work that potentially could have created an ignition 842 • 843 source is complete, such as welding, cutting, grinding, or sparks produced by APS 844 equipment.
- 845 A fire guard can be provided by any APS employee or contractor who has the proper fire • 846 tools and the ability to act if necessary.
- 847 When providing a fire guard, fire tools shall be within easy reach and in close proximity. •
- 848 • No traveling or parking off established roads and avoid idling engines.
- 849 Make sure undercarriage and exhaust of vehicles is devoid of vegetation. •
- 850 • Create a safe space to set hot saws and other equipment down in your work site, per APS 851 Accident Prevention Manual (APM).
- 852 • No smoking.
- 853 When to use and not use a fire guard:
- 854 Work activity creates a spark, i.e., welding, cutting, grinding, or sparks are produced by • 855 APS equipment. (Three hours of continual watch after above type work is completed)
- 856 If you are on private property in a Wildland Urban Interface/populated area and the • 857 landscape is irrigated and boxed in by concrete and asphalt or sand and rock, your risk of 858 ignition is mitigated and a fire guard is not needed.
- 859 • A fire guard is not necessary in restricted or closure areas if the purpose and work 860 performed in that area has not caused/created a concern for potential ignition.
- 861 If you are on the outskirts of a downtown/populated area on private property and the • landscape looks just like the agency land on the other side of the fence, a fire guard shall be 862 863 provided.
- 10.3. Red Flag Standing Order 864
- 865 APS has adopted a standing order in which additional precautions are put in place during red flag 866 warning periods as defined by the Southwest Coordination Center Annual Operating Plan in 867 conjunction with the National Weather Service
- 868 A Red Flag Warning is defined as a critical combination of dry fuels and weather conditions that 869 support extreme fire behavior. Red Flag Warnings are issued to identify Red Flag events which 870 are highly likely, or imminent, usually within the following 12–48-hour period. Fire Weather 871 Watches are issued to identify the elevated threat of similar conditions during the following 18– 872 96-hour period. Specific objective criteria for Red Flag events are listed below. Fire management 873 may also request that Red Flag Warnings or Fire Weather Watches be issued under extenuating 874
- circumstances (i.e., fuel conditions so severe that marginally windy and dry conditions would
- 875 lead to extreme fire behavior).
- 876 Criteria: standardized criteria for issuance of Fire Weather Watches and Red Flag 877 Warnings in the Southwest Area are a combination of weather and fire danger ratings.
- 878 **In the absence of overriding input from fire management personnel, a Red Flag event is
- 879 defined by the following conditions occurring simultaneously for three or more hours across any 880 portion of a fire weather zone:

- 1) 20-foot winds sustained 20 mph or greater, or gusting to 35 mph or greater
- 882 2) Relative humidity of 15% or lower
- 883 3) National Fire Danger Rating System adjective fire danger rating of "High" or higher

A Red Flag Warning is indicative of extreme fire weather conditions and additional precautions
will be taken by APS operations regardless of current Preparedness level (P-level) in districts
where a Red Flag Warning has been issued. When a Red Flag Warning is issued, the following
measures shall be taken for the entire day (6:00am – 11:59pm) within the district(s) affected by
the Red Flag Warning:


- All vehicles shall have all P2-equivalent fire mitigation tools, including fire extinguishers, backpack pump, hand tool, and an extra five gallons of water.
- All Non-emergent Field Work (includes Pre-emergent Field Work and Planned Field
 Work) shall be deferred until after the red flag warning has expired (11:59 PM)
- Emergent Field Work can occur with notification from maintenance department to T&D
 Leadership including the local Manager and Fire Mitigation and must include a fire
 watch for 3 hours post completion of the work.
- DOC Operations or ECC Operations shall notify via email the Fire Mitigation Duty
 Officer of any line trip or recloser operation. If there is known line down, or fire reported,
 an immediate phone call will be made to the Fire Mitigation Duty Officer.
- Any line trip resulting in an open circuit shall have a complete line patrol completed
 before closing for a test.
- Red Flag Warnings will be communicated via email from the Fire Mitigation team to thefollowing DLs:
- 903 Fire Notification
- 904 DOC Shift Supervisors
- 905 ECC Shift Supervisors
- 906 T&D Leadership
- 907 10.4. No-Reclose Strategy
- As part of the comprehensive fire mitigation efforts, APS implements adjustments to our
 automatic protection operations, including breaker and recloser to non-reclose settings during
 elevated fire conditions (P3 and above).
- 911 Automatic protection operations in high fire risk areas are proactively changed during elevated
- 912 fire conditions to mitigate these risks. APS field personnel will be required to analyze additional
- 913 system data and perform more foot patrols and inspections to help identify potential hazards
- before de-energized lines are re-energized. APS has proactively implemented these protocols and

- 915 line patrols to help mitigate the risk of wildfires being caused by downed conductors or damaged 916 equipment.
- 917 During elevated fire conditions (P3 and above), APS will enact operational settings and protocols
- 918 (TD-DO-PRD-A035). APS Fire Mitigation Specialist (FMS) shall notify the Distribution
- 919 Operations Center (DOC) and Energy Control Center (ECC) along with all Construction and
- 920 Maintenance departments throughout the state of work restrictions via email. The DOC and ECC
- 921 will implement testing and reclose protocols. Testing of any distribution line section relayed
- shall be reported by circuit immediately to the APS FMS. Transmission line sections included in
- 923 the No-Reclose Strategy are reported via email from the ECC transmission system log to the
- APS FMS. The following operational settings and protocols apply during elevated fire
- 925 conditions.

933

- 926 The APS No-Reclose Strategy in high-risk areas is being implemented to protect the public and
- the communities we serve. While these measures may result in outages for customers fed by
- 928 certain high-risk feeders, it will also help mitigate the potential risk of wildfires. The goal of fire
- 929 mitigation settings is to prevent fire from ever happening. The second goal is to provide safe and
- 930 reliable electricity to the communities APS serves while at the same time ensuring firefighter
- safety around our system in the event of a fire. As part of the APS Promise, APS will continue to
- 932 keep the environment, our customers and our employees as our critical areas of focus.

934 Figure 8. Workflow for DOC and ECC during No-Reclose Strategy (NRS)

935 10.5. APS and the Incident Command System

The Incident Command System (ICS) is a standardized approach to the command, control and
coordination of emergency response and provides a common hierarchy to allow responders from
multiple agencies to be effective. APS has adopted the use of ICS during response to a wildfire
incident.

In the event of a wildfire, firefighting agencies will use ICS to manage firefighting efforts, APS
will stand up its own team using the ICS organization to coordinate the response and actions
taken by APS. In order to maintain communication and coordinate efforts between the two
organizations, APS integrates into the ICS organization on the fire in the form of a Liaison. The
Liaison is a single person point-of-contact who works with fire personnel to coordinate efforts
between fire crews and APS crews. This close coordination provides safer working conditions
for both firefighters and APS crews and also leads to faster incident stabilization and power

947 restoration.

948 10.5.1. Training and seasonal awareness

At APS, we believe the overall situational awareness of the company and its appropriately

950 trained workforce can be the first line of defense against wildfires. Our Fire Mitigation Training

program, including the electronic learning modules, have developed a culture of fire awareness

952 and readiness focused on preparedness, awareness and continual education.

APS has developed an extensive set of work policies and complementary training programs

designed to minimize the likelihood field work will be the source of ignition and provide for safe

and appropriate response such as the Wildfire CPR developed by APS. This training incorporates

956 principles and concepts drawn from various federal, state and local protocols, and standards

addressing wildland fire prevention and suppression.

SUGGESTED FIRE PREVENTION TRAINING TOPICS					
TRAINING SUBJECT	DESCRIPTION	INFORMATION INCLUDED IN COURSE			
Wildland Fire Prevention and Awareness	General awareness of dangers and consequences of wildland fires and general requirements for working in those areas.	Course 1: Wildland Fire Prevention and Awareness			
Employee Requirements for Entering Forested Areas	National Forest Service and APS requirements for working in forested areas.	Course 2: Wildland Operating Guidelines During Fire Restrictions			
Safety and Fire Equipment and its Use	Firefighting and prevention equipment required on vehicles, hands-on demonstration and training.	Course 2: Wildland Operating Guidelines During Fire Restrictions			
Elevated Fire Conditions and Operating Guidelines	Forest Service and APS guidelines for operations during elevated fire danger.	Course 2: Wildland Operating Guidelines During Fire Restrictions			
Line Patrol	To identify, document and correct emergency conditions and non-emergency concerns.	Course 3: Hazardous Vegetation Recognition During Line Inspections			
Notification Process	Communication both internally and externally to report document and track issues.	In all five courses			
Recognizing Fire Hazards	Vegetation and equipment issues that pose potential hazards and how to address them.	Course 1: Wildland Fire Prevention and Awareness Course 3: Hazardous Vegetation Recognition During Line Inspections			
Response to Fires (Escape Plan, Safety Zones)	Fires safety and planning, including location awareness, escape planning, equipment needed, communication and personal protective equipment (PPE).	Course 4: Working In A Wildland Area During A Fire			
APS Vegetation Management Manual	Procedures and guidelines for vegetation control and clearance of electric lines.	Not Training			
Tall Board or Pre-Job Brief	Formalize fire prevention in the current form. Discuss actions of that day prior to work beginning and what precautionary measures to take.	Not Training			
Personal Protective Equipment	Safety equipment needed for employees working in fire risk areas.	Course 2: Wildland Operating Guidelines During Fire Restrictions			

958

- 959 Figure 9. Fire Mitigation training topics
- 960 The APS Wildfire Preparedness Levels describe the conditions under which the threat of fire is
- 961 increased, and the field practices and resources which will be implemented as conditions
- 962 increase. These changes affect work rules and equipment under each preparedness level.
- 963 Training in the Incident Command System protocols and responsibilities are a key element of
- 964 training. This system provides a structure for disciplined communications and decision-making
- 965 during fire incidents. This training is completed through in-person classes, online training,
- 966 national certified courses, and safety stand-downs throughout the year.

967 10.5.2. Fire mitigation forum and seasonal preparation meetings

- 968 Each year, the APS Fire Mitigation team conducts an annual forum to discuss, collaborate and
- share the latest mitigation efforts and season outlooks throughout Transmission, Distribution and
- 970 Communications. The forum is used to bring together internal stakeholders to discuss
- 971 improvement, as well as share successes from the past year regarding fire mitigation efforts. In
- addition to the annual forum, seasonal preparation meetings begin early in the year with
- 973 anticipation of elevated fire conditions and to drive preparation and mitigation measures.

974 10.5.3. APS crews and contractors requirements

975 Per the APS Comprehensive Fire Mitigation Plan and associated fire mitigation procedures, all

976 employees and contract crews shall meet the expectations during elevated fire conditions for safe

977 operations. When the current and expected fire weather conditions warrant elevating the district

978 preparedness levels to preparedness level 4 or 5, all work is evaluated and prioritized based on

979 pre-emergent and emergent only.

Red Flag – In the event of Red Flag conditions, the APS Fire Mitigation Meteorologist will
 notify T&D as soon as possible after issuance for the APS Operational Districts affected. All

982 mitigation measures associated with the Red Flag Standing Order will be taken along with efforts

- 983 to curtail non-essential work. This information is available in the APS Fire Dashboard and
- 984 supplied via email to leadership.
- APS crews and contractors shall designate a fire guard during Preparedness Levels 3 and higher
- and during Red Flag conditions. The fire guard is responsible for executing and carrying out the
- 987 Field Work Restrictions (Industrial Fire Plan requirements). The fire guard shall make daily
- 988 inspections to ensure the Industrial Fire Plan requirements are met.
- 989 **Fire guard** is in place to prevent, detect and suppress incipient phase wildfires (if safe to do
- so) and shall provide one or more persons at each job location where internal combustion
- 991 engines and/or power-driven equipment are used. Each fire guard is required to read, understand
- 992 and perform the Preparedness Level Field Work Restrictions (Industrial Fire Plan duties) listed
- above. The fire guard may perform other contract work in conjunction with fire guard duties,
- 994 provided such other work does not distract from fire guard responsibilities.
- 995 **Communications** APS crews and contractors shall provide some form of prompt and reliable 996 direct communication, such as a cell phone or two-way radio, between the fire guard(s) and the 997 work crews, and between the crew's operations and APS Supervisor. In an emergency, activate 998 the emergency system by calling 911 and the APS project lead, as an additional resource, a list of 999 the Publicly Managed Land Dispatch numbers has been provided in the contacts page at the end 1000 of the CFMP.
- 1001 Check-in/Check-Out All crews working in Publicly Managed Lands (PML) during
- 1002 preparedness levels 4 and 5 must check in with APS project lead and provide GPS location each 1003 morning before starting work.

1004 10.6. Federal, State, and Tribal lands during restrictions and closures

1005 During elevated fire conditions, fire restrictions and closures may be enacted on agency lands. 1006 These are determined by state and federal fire management officers and land managers during 1007 evaluation of weather conditions, fuels measurements and historic fire data among others. This is 1008 outlined in the Southwest Interagency Fire Restrictions and Closure Operating Plan. The intent 1009 of these guidelines is to facilitate interagency collaboration during the implementation of fire 1010 restrictions, closures and/or rescissions and provide consistent coordinated fire restriction 1011 messaging to the public. The guidelines also provide direction for southwest area agency's 1012 administrators, tribal leaders and fire staff to develop and implement fire restrictions and

1013 closures.

- 1014 The impact this has on utility work can vary by the level of restrictions and industrial plan
- 1015 designation as outlined in the state and federal guidelines. During restrictions and/or closures, the
- 1016 APS Fire Mitigation team (FMT) coordinates with the land managers to implement and review
- 1017 the current restrictions. APS FMT participates in weekly Fire Restriction Zone calls (Northern,
- 1018 Central-West, Southeastern, and White Mountain) to ensure the current APS District
- 1019 Preparedness Level is meeting or exceeding the agency guidelines during elevated fire
- 1020 conditions. The APS CFMP is evaluated annually by Land Managers and exemptions are
- 1021 determined based on mitigation measures outlined in the APS CFMP.

1022 **11. Grid design and system hardening**

- 1023 APS's ability to serve its current customers safely, reliably and efficiently while meeting the
- 1024 needs of a growing population is essential to our future success. As Arizona grows, APS will
- 1025 continue to construct, expand and improve grid technology to power this growth.
- 1026 APS serves the sixth largest service territory in the United States, including Maricopa County,
- 1027 the fourth most populous county in the country with 4.3 million residents. In 2017, according to
- 1028 the Census Bureau, more people moved to Maricopa County than any other county in the U.S.,
- 1029 which presents both a challenge and an opportunity for energy companies who serve this fast-
- 1030 growing population.
- 1031 To meet this challenge, energy companies must be agile while balancing the need for long-term
- 1032 planning to serve growing energy needs. At APS, we consider ourselves the literal power behind
- this growth as we actively engage in securing new economic development projects, supply
- 1034 reliable and low-cost energy, construct dependable infrastructure (including smart-grid
- 1035 technology), and develop cutting edge renewable energy projects to meet customer demand and 1036 system needs.
- 1037 In addition to these projects, APS has improved processes to ensure we are performing
- 1038 effectively and efficiently for our growing customer base. This includes adding training rigor for
- 1039 our project managers, equipping our workforce to manage the increasing number of projects and1040 proactively working with developers and home builders to improve the time and effort required
- 1041 to energize their developments.
- 1042 11.1. Grid Visualization & Automation
- 1043 Over the past century, utilities have largely relied on a uniquely skilled workforce to maintain a 1044 safe, reliable grid. Operators and linemen/journeyman take years to develop, and the talent pool 1045 can be challenging to keep filled. Additionally, the utility industry is experiencing rapid changes 1046 in customer technology and behaviors, increased intensity and impacts of climate change and 1047 increasing costs of aged assets and system upgrades. With all this in mind, utilities must continue
- 1048 to use their resources wisely by leveraging the right technology and data to drive operations and
- 1049 planning decisions. APS is working to arm the grid with the proper visualization and automation
- 1050 that will meet the needs of modern-day `challenges.
- 1051 Innovative capabilities can be facilitated by advanced grid technology (AGT), also known as
- smart grid technology, which allows devices to communicate and operate, both remotely and
- 1053 independently. We leverage this technology in two main ways: 1) by adopting an Area

1054 Deployment model aiming to deploy reliability, power quality and communication technologies 1055 in the same geographic areas to implement a high degree of interoperability and efficient use of 1056 our resources. 2) through Fire Mitigation deployments that are driven by device coordination 1057 studies for segmenting and sectionalizing feeders in areas of increased fire risk; this also uses 1058 reliability and communication technologies to achieve risk management objectives.

1059 Communication infrastructure is necessary for the field devices to communicate back to the 1060 operations center and the operations system. The AGT or smart grid tech is what executes the 1061 steps to dynamically manage the power delivery. The managing powerhouse of these operations 1062 is our advanced distribution management system (ADMS), which provides visibility to the status 1063 of the devices and gives our operators the ability to monitor and control them. AGT devices are 1064 equipped with supervisory control & data acquisition (SCADA) that provides visualization 1065 capability.

- 1066 Additionally, this same mix of technology can enable distribution automation (DA). Distribution
- 1067 Automation is a term used to describe a strategy to enhance our operations of the distribution
- 1068 system to meet the needs of the modern age. DA facilitates the automated control of distribution
- 1069 field devices, such as capacitor banks and reclosers, with no operator input required. Two key
- applications in ADMS's DA toolbox are Fault Location, Isolation and Supply Restoration
- 1071 (FLISR), and Fire Mitigation (FM).
- 1072 With FLISR technology, there is less frequency of outages, the outages seen will be shorter and
- 1073 they will impact less customers. The protective properties also extend the life of our conductors
- and assets. Automation also means fewer manual touchpoints and field responses for operators,
- 1075 therefore saving time and money.
- 1076 With FM, we can detect operations for risk mitigation based on as-operated state, visualize areas
- within the ADMS view in accordance with weather and vegetation conditions, preventpowerline-initiated fires, and dynamically return to normal state as fire risk reduces. This
- 1078 powerme-initiated fires, and dynamicarly return to normal state as fire fisk reduces. This 1079 application can empower our operators and system to directly reduce wildfire risk, keep
- 1080 communities safe and maintain reliability in areas that tend to by disproportionately impacted
- 1081 based on the geographic landscape.
- 1082 The main objective in implementing these applications is to get all distribution operators 1083 working from one single control system versus multiple control systems, or what we call a 1084 single-pane-of-glass. This move reduces safety risks while increasing speed of operations. The 1085 FLISR and FM combination informs operations with greater accuracy and with greater response 1086 time to execute controls, while also minimizing unnecessary dispatch of field staff. This keeps 1087 the system resilient while allowing the skilled labor on areas of greater need, empowering APS 1088 to meet the evolving needs of grid management in the modern world.
- 1089 11.2. Advanced protection
- 1090 The APS System Health and Standards organizations work closely with Transmission,
- 1091 Distribution & Customers and APS contractors to ensure the best possible choice of technology,
- 1092 design and installation of equipment, hardware, and software. These standards are to ensure the
- 1093 prevention and mitigation of fire threats to our system or from our system. This consists of
- 1094 outage reviews and incident cause analysis to implement best management practices.

- 1095 APS's grid modernization strategy is a key component of the Comprehensive Fire Mitigation
- 1096 Plan and is focused on proactively meeting the evolving energy needs of our customers in a safe, 1097 reliable and cost-efficient manner.
- 1098 The electrical grid is a complex and dynamic machine that requires precision. At any given time,
- 1099 the output of electricity on the grid must match the exact customer demand to maintain power
- 1100 quality. Electricity is one of the only resources requiring this unique precision to manage supply
- 1101 and demand.
- 1102 A traditional distribution system features a one-way power flow from the generation source to
- 1103 customers. However, with access to distributed energy resources (DERs), customers can now 1104 generate electricity, causing reverse power flow on the grid and increased voltage irregularities
- 1105 or power quality disturbances. Preserving the power quality and reliability our customers have
- 1106 come to expect, while still integrating new customer technology, demands real-time system
- 1107 feedback and the ability to respond quickly to power quality disturbances.
- 1108 Through the deployment of advanced grid technologies (AGT) like automatic switches, two-way
- 1109 communicating devices, integrated frequency control systems, and advanced line sensors, APS is
- 1110 improving grid reliability and giving our engineering, operations and maintenance personnel the
- ability to view real-time information and exert remote control. This increase in situational
- awareness and remote operations allows for safe operations. APS is currently installing AGT
- 1113 infrastructure where all devices are connected back to APS's data centers using a variety of
- 1114 communication mechanisms including fiber, advanced metering infrastructure (AMI) and other
- 1115 wireless technologies to increase public safety during wildfire events.
- 1116 APS utilizes a variety of advanced grid solutions to create a more nimble and agile system.
- 1117 Expulsion Limiting Fuses (ELF), communicating protective devices and line circuit breakers are
- 1118 examples of protective equipment used in our system. During elevated fire conditions, it is
- 1119 important to take steps to mitigate fire ignitions by removing automatic reclosing on line circuit
- 1120 breakers while maintaining electrical protection. APS selectively reduces the number of
- 1121 customers or critical loads impacted by a trip event for faults in the system.
- 1122 To these ends, APS is performing ongoing engineering studies, which fall within two main 1123 categories:
- 1124 1. Achieve adequate upstream and downstream coordination of protective devices such as fuses,
 pad-mount gear, line circuit breakers, and substation relays for timing and loading coordination.
- 1126 2. Strategically deploy protective devices to improve protection while achieving coordination.1127 This includes:
- For overhead line sections upstream of transitions to underground, install line circuit
 breakers at overhead locations.
- The company improves operational flexibility, supporting our customer restoration and minimizing fire risk.
- Add protective devices for taps off the main backbone of the system, with consideration of loading levels, fault magnitude, coordination.

1134 1135 1136	 Protect critical loads such as hospitals and data centers to minimize the exposure of an outage for faults downstream Increase operation flexibility and enhance the customer experience by improving and/or
1137	creating ties between adjacent feeders.
1138	11.3. Planned additions, removals and upgrade of utility equipment
1139	APS programmatically conducts Feeder Coordination studies on each high fire risk distribution
1140	feeder to evaluate current protection schemes against fault events. Recommended improvements
1141	to protective schemes include an additional security measure of inhibiting reclosing during
1142	elevated fire conditions while also minimizing customer outage footprint.
1143	Feeder coordination study recommendations could include, but are not limited to:
1144	Upgrades to existing device protective settings
1145	 Upgrades to existing reclosing devices
1146	• Replacing existing oil-filled devices with vacuum operated devices, reducing the
1147	potential of system to ground ignition.
1148	 Upgrading existing vacuum operated devices with upgraded technology that
1149	provides increased protection and coordination under fault conditions
1150	New recloser device locations
1151	• Installation of new recloser to eliminate a protection or coordination risk; or,
1152	increase segmentation benefits under a fault event.
1153	 Upgrades to existing expulsion fusing at feeder laterals and OH/UG transitions
1154	 Removal of existing expulsion type OH fusing and replacement with non-
1155	expulsion/expulsion limiting fusing
1156	Finalized study recommendations are added to the FM Program workplan for planning and

execution either the same calendar year of study finalization or the following calendar year.

1158 11.4. NRS (No-Reclose Strategy)

1159 System faults can be temporary in nature such as wire slapping together or a tree branch tapping 1160 a line. Other faults are sustained such as wire on the ground or a tarp in the line. During normal 1161 system operation, some protection devices (i.e., feeder breakers, reclosers, trip savers) reclose 1162 shortly after an outage attempting to re-energize customers. This reclosing mechanism helps 1163 improve the SAIEUSAIDI and other reliability metrics

1163 improve the SAIFI/SAIDI and other reliability metrics.

1164 This reclose mechanism essentially tests if the fault was temporary or sustained, also referred to

as a "bolted fault." If the fault is bolted, the line will trip out of service again. If the fault is

- 1166 temporary, the protection device will reclose after seconds re-energizing the line and restore 1167 power to the affected customers.
- 1168 During high fire risk periods (i.e., P3 or higher), reclosing is disabled on protective devices to
- 1169 prevent the testing of a line until a line patrol (visual inspection) can be completed to ensure
- there are no wires on the ground or other visual indication that energizing the line won't cause
- 1171 sparking and therefore, a fire.

- 1172 This no-reclose strategy is defined in TD-DO-PRD-A035: Operations Preparation and Response
- 1173 to Elevated Fire Conditions. This procedure also includes conditions that must be satisfied prior
- 1174 to testing or re-energizing high fire risk lines/feeders.
- 1175 11.5. Distribution communications reliability improvements

1176 Grid modernization is being largely driven at the distribution level by utilizing smart grid or 1177 advanced grid technology (AGT) fitted with Supervisory Control and Data Acquisition

- 1178 (SCADA) capabilities to enable improved visualization, control and automation. While the
- 1179 devices have smart capabilities, leveraging them requires a communication path back to the
- 1180 operations center and the advanced distribution management system (ADMS). These devices
- 1181 constantly send and receive large amounts of data, so ADMS depends on reliable and secure
- 1182 communication network infrastructure. The increasing importance of monitoring and issuing
- 1183 supervisory control of our grid comes with more demanding and stringent requirements for 1184 network connectivity between our ADMS and our AGT field devices. For real-time monitoring,
- 1185
- supervisory control and automation to work efficiently and effectively, APS must invest in a
- 1186 modern Field Area Network (FAN) and Wide Area Network (WAN) for end-to-end
- 1187 communication.
- 1188 The 900MHz FAN project (IP MAS) is a secure point to multi-point network that provides over
- 1189 the air communication from a master radio to the remote radios installed with the AGT
- 1190 controllers. The project began in 2020 with deployments in the metro region. Considerations for
- 1191 selecting site locations each year include WAN project schedule, AGT Area Deployments and
- 1192 Fire Mitigation goals. Around 65 master radios have been deployed from 2020 to 2023, with
- 1193 primary coverage in metro with some expansion into state regions. The scope typically consists
- 1194 of 15-20 sites per year.
- 1195 WAN expansion creates a path between data centers and substations, transporting IP networks
- 1196 across the organization. APS currently relies on two networks, PowerWAN and TDM, both are 1197 outdated and ready for replacement. The WAN project (NGN Program) will converge those two 1198 networks, creating a single pathway.
- 1199 The project began in 2020 with a 10-year forecast for completion. As of 2023, the program is
- 1200 roughly a third of the way finished. The full program scope consists of 22 rings (network
- 1201 elements) and is completed in three phases: Hardware replacement, IP service cutover and TDM
- 1202 service cutover.
- 1203 The 900 MHz FAN project can be and is deployed outside of WAN schedule, but the radios will 1204 not report back to ADMS until phase two of NGN is completed. The estimated completion is
- 1205 2031, with phase one completed in 2029. Locations for expansion have mainly prioritized AGT
- 1206 area deployments in the past, whereas it now is incorporating more of the state region areas
- 1207 considered to have higher fire risk. The AGT team provides the IT Communications team with
- 1208 forecasted areas so it will expand to any area where smart grid technology is being deployed in
- 1209 mass. Scope will continue to be around 15-20 sites per year.

1210 11.6. Distribution overhead system hardening

- 1211 As discussed previously, the APS fire mitigation strategy consists of three core areas:
- 1212 Prevention, Mitigation and Response. System hardening is the implementation of technologies to
- 1213 help prevent and mitigate the effect of fires on the distribution system. To support this effort, the
- 1214 APS T&D Engineering and Standards (TDES) group is reviewing and evaluating technologies
- 1215 with the proven ability to prevent sources of ignition along utility corridors and minimize the
- 1216 impact of fire on the system.
- 1217 This effort consists of a two-pronged approach:
- 1218 1. TDES reviews System to Ground (STG) events with APS Fire Mitigation and supporting 1219 groups. Through this process, APS can identify potential distribution asset classes that 1220 warrant further review for system hardening.
- 1221 As a result of these efforts, the following technologies are being actively evaluated or 1222
- implemented:
- 1223 11.6.1. Steel Poles

1224 Steel poles are recommended as a standard construction for areas at risk of fires. They will help 1225 reduce the potential spread of a fire while providing some resistance against fast moving grass 1226 fires. While currently being a standard pole material used for construction, historically, their use 1227 has been limited to urban areas accessible by vehicles due to challenges associated with pole 1228 climbing for maintenance.

1229 11.6.2. Wood Pole Wrap

1230 Protecting existing and new wood poles against fire impact. For this application, a wood pole 1231 wrap has been approved and introduced as a tool to protect wood poles against ignition.

1232 This pole wrap is a galvanized steel mesh which is impregnated with an intumescent carbon

1233 coating. When the coating is exposed to heat, it expands, filling the voids in the mesh and

1234 creating an insulating barrier. The mesh is completely wrapped around wood poles from slightly

- 1235 below grade up to a specified height, depending on the prevalent fuels and fire conditions in the
- 1236 area. Once the coating is activated and expanded, the insulating barrier it creates around the pole
- 1237 protects the pole from further exposure to heat, embers and hot particles.
- 1238 11.6.3. Fusing
- 1239 Link break expulsion fuses, typically found on overhead distribution lines, use an appropriately
- 1240 sized fusible link housed within a fuse tube to protect equipment and facilities from surge and
- 1241 overload conditions. When these expulsion fuses operate, the fusible link breaks, and hot gases
- and particles are vented out of the fuse tube. These expulsion fuses were identified as a possible 1242
- 1243 source of ignition due to their method of operation.
- 1244 Various alternate fusing options are being investigated for use in high fire risk areas which
- 1245 significantly reduce the expulsion of hot particles during operation. They achieve this using a
- 1246 muffler/exhaust system which traps and contains the hot particles, or through the use of different

materials to rapidly quench the arc generated during operation. These fusing options can be used to protect overhead transformers, transitions and feeder laterals. Once validated and approved,

- 1249 they will be introduced with construction standards for use in high fire risk areas.
- 1250 11.6.4. Surge Arresters

Overhead surge arresters are used to protect overhead equipment, distribution lines and facilities. Under normal conditions, they offer a high impedance path to ground. However, during surge current conditions, they allow a low impedance path to ground to shunt the surge away and protect nearby facilities. Under significant overload events, or as they approach end of life, the surge arrester may shed hot particles when the ground lead disconnector operates or if the internal metal oxide varistor (MOV) block fails. This was identified as another potential source of ignition and alternative solutions are being investigated.

To address this, a surge arrester designed for use in high fire risk areas is being pursued as a suitable alternative to APS' standard construction. These arresters utilize a fully contained disconnector between the ground lead and the arrester body itself. This disconnector is designed to safely disconnect the ground lead without shedding sparks and to prevent the MOV block from failing catastrophically under significant surge events. Once this surge arrester is validated and approved, it will be introduced with construction standards for application in high fire risk areas.

1265 11.6.5. Wildlife Guards

1266 Bird guards and wildlife protection devices are used to reduce the risk of wildlife contacting 1267 nearby surfaces of different voltage potentials. If contact is made, a fault would occur – leading 1268 to potential outages, damage to equipment, animal fatalities, and system to ground ignitions. The 1269 APS Avian and Wildlife Protection program provides industry standards companywide on 1270 understanding and mitigating the risk protentional for these incidents. Bird guard covers and 1271 devices are used on transmission and distribution lines, as well as inside of substations. Some 1272 examples of these would be phase covers, vice top covers, wildlife discs, arrestor and bushing covers, flight diverters and anti-perch caps. Some of these protective covers have also shown 1273 1274 success in minimizing incidents due to vegetation or mylar balloons.

1275 The Avian and Wildlife Protection program also installs nesting platforms on APS poles to 1276 encourage nesting birds to build on these rather than on our equipment. These platforms reduce 1277 the chances of avian caused fires and outages caused by nesting substrate reaching into our 1278 equipment and going phase to phase. Another avian mitigation tool is the installation of avian 1279 perches. The perches allow for birds to safely sit above APS equipment without risk to the 1280 above-mentioned issues.

APS recommends continuing to adopt the use of wildlife protection on transmission, distribution and substation facilities and to seek out wildlife protection solutions for hardware that currently does not have an approved wildlife guard. To support this, wildlife guards from various manufacturers are being evaluated and tested on different accessories by APS Standards and Engineering and members of APS System Health. Through this work, APS will continue to grow this program and further decrease the chances of avian caused outages and system to ground fires.

1288 11.6.6. Covered conductor

1289 In the same vein as wildlife guards, a jacketed conductor, also known as tree wire, can be used

1290 for overhead distribution facilities to help minimize the risk of wildlife, vegetation and foreign 1291 object contact between lines. However, this jacketed conductor poses new challenges in

1291 constructability and maintainability due to different tooling and hardware needs as well as work

1293 practices. Both de-energized and energized evaluations are being conducted by APS from a

1294 performance, constructability and maintainability standpoint.

1295 11.7. Pole replacement and reinforcement

APS has wood pole infrastructure throughout the wildland urban interface. The purpose of the Wood Pole Replacement program is to foster and improve system reliability through regular inspections and maintenance, including total replacement of the wood poles. Failures of these poles can interrupt service to customers, present a public safety hazard and result in costly emergency repairs. In recognition of these risks, Section 6 of the National Electric Safety Code

1301 requires utilities to regularly inspect and maintain the poles in their system.

Wood pole inspections are required to ensure the integrity of the pole structure and enhance system reliability. The National Electric Safety Code requires that utilities replace structures in which the strength has declined below 66% of the original design value. APS uses 70% of the original design strength for its replacement criteria. Wood poles are inspected for deterioration due to rot, decay or insect damage. In addition, wood poles are tested for remaining strength.

1307 11.8. Microgrids

Microgrids can be deployed on the distribution system to improve reliability for our customers.
These systems typically have the capability to serve as an alternate generation source for our
customers during system outages, and often use generators or batteries as a power source.

1311 During Elevated Fire Risk conditions, the No Reclose Strategy and patrol strategies that we

implement can lead to extended restoration times for our customers. Microgrids have the

1313 potential to reduce the impact of extended restoration times.

1314 11.9. Transmission tower maintenance and replacement

1315 This entails a structure-by-structure inspection of all transmission lines, assessing and repairing 1316 each structure as needed. Identified remediations may include insulator replacements, structural

1317 component replacements and hardware tightening. Each structure's inspection is on a seven-year

1317 component replacements and hardware tightening. Each structure's inspection is on a seven 1318 cycle utilizing a comprehensive aerial inspection or a climbing inspection process. Tower

1319 management maintenance work is prioritized, and completion dates are tracked in Maximo.

1320 **12. Asset management**

1321 12.1. Geographic information system data

A geographic information system (GIS) is a system that creates, manages, analyzes, and maps all types of data with a spatial context. GIS connects data to a map, integrating location data (where assets are) with all types of descriptive information (what things are like there). This provides a

- 1325 foundation for mapping and analysis that is used across many areas of the utility's operations.
- 1326 GIS helps users understand patterns, relationships and geographic context. The benefits include
- 1327 improved communication and efficiency as well as better management and decision making.
- 1328 The GIS Services team are the Owners and Stewards of the enterprise GIS database, which
- 1329 contains all assets of the electric and communications infrastructure. As a System of Record, we
- 1330 digitize, process and QA/QC the data found in the designs and drawings of various work
- 1331 packages. As a System of Engagement, we publish and integrate our data into tools that allow
- 1332 scaling and distribution of the inherent power of maps and data to the enterprise, therefore
- 1333 improving collaboration, information and decision making. As the System of Insight, the GIS
- 1334 Services team supports and empowers internal and external customers with data, map and app
- 1335 solutions that assist APS with achieving business objectives.
- 1336 The GIS Services team maintains the system of record through published department processes
- 1337 that capture the key steps in digitizing the electric assets, for which the IT Communications
- department have their own department procedures. TD-EG-PRC-4003 outlines the #2 Work
- 1339 Order Construction Mapping process intended to walk a user through the life cycle of a work
- 1340 order issued for construction, from initial routing until mapping of the designed state that was
- 1341 Issued for Construction (IFC). Once facilities are constructed in the field, crew foreman provide
- a redlined design to capture as-built state of the facilities that the GIS Department captures
- 1343 through the As-built Mapping process, TD-TC-PRD-1006.
- Beyond the system of record, APS subscribes to the use of a variety of ESRI ArcGIS tools for
- empowering the organization. Some of these tools are ArcGIS Online and ArcGIS Enterprise for
- 1346 web content and collaboration. These distributed web environments allow end-user departments
- 1347 to create and manage their own geographic content and workflows while also leveraging internal
- and external data sources made available through web map and feature services. These
- 1349 workflows may also be extended through field apps such as Field Maps, Survey123 and Quick
- 1350 Capture to enhance operational capabilities supporting critical activities like vegetation
- 1351 management, fire tracking, risk analysis, and more.
- 1352 12.2. Tracking and analysis of STG/GTS
- 1353 The tracking and analysis of system to ground (STG) ignitions and impacts from ground to
- system (GTS) fires remains a priority in assessing fire risk to the APS system. The mitigation of
- 1355 STG ignitions is an ongoing process through vegetation management, Defensible Space Around
- 1356 Poles (DSAP) program, the hazard tree program, routine line maintenance, right of way
- 1357 management, and upgrades to APS devices and system each year. Currently, the Fire Mitigation
- team (FMT) collects data and tracks all STGs from the beginning to end of year. The Advanced
- Distribution Management System (ADMS) from distribution operations center (DOC) provides a
 tool for the FMT to find detailed information directly from crews on outages or incidents
- requiring an APS response. From this information, a report with pictures is created and sent to
- 1362 the System Health and Standards Department to discuss potential solutions and improvements.
- 1363 As APS's infrastructure has potential to cause STG fires, GTS fires that have the potential to
- affect the system are tracked and anticipated to mitigate impacts. With the purpose of tracking
- 1365 any wildland fire, the APS Wildfire Awareness Dashboard visualizes and tracks potential

impacts of wildland fires, including prescribed burns. In cooperation with city, state and regional
dispatch centers, the FMT receives notifications sent through text message on any initial reports
of a fire or burn in the state of Arizona. From this information and other tools, the FMT
internally maps and monitors active fires for potential impact to APS' system. Direct
communication with DOC, FMT and fire resources is necessary to gather real-time information

- 1371 for better determination of the risk involved. The impact related to APS's infrastructure includes
- 1372 but is not limited to outages or de-energization, tripped lines due to fire impacts, damaged
- devices or poles, and risk of injuries to firefighters or APS crews. The impacts are then
- 1374 documented, tracked and analyzed for better improvements to reduce the impact of wildland fire
- 1375 on APS.

1376 12.3. Pre Elevated Fire Conditions Line Patrols

The Elevated Fire Conditions Line Patrol guidance is documented in the Electrical Facilities
Inspections and Corrections procedure, TD-SH-PRD-2001. Inspections are performed annually

1379 with anomalies identified, documented and prioritized within Maximo. EFC patrols determine

- 1380 potential issues that need to be corrected on sections of high-risk circuits with elevated risk of
- 1381 fire. Patrols include identifying combustible materials or vegetation that must be removed and
- 1382 equipment/material anomalies that could create a spark.

1383 During the pre-elevated fire conditions line inspections, poles that have reached the end of their 1384 lives and are identified and scheduled to be replaced. These poles are reviewed annually prior to 1385 fire season to look for large cracking, checking for damage that could degrade the life of the pole 1386 during a high wind or direct fire impact, and could cause the conductor being held up by the pole 1387 to fall or break. This replacement due to visual inspection within the wildland urban interface is 1388 in addition to the invasive pole testing program that occurs on a regular cadence based on utility 1389 best practices. These poles are replaced with new sturdier wood poles or steel poles if the line is 1390 accessible by a truck. This program helps to maintain the integrity of the line in the event of its 1391 proximity to a fire, which results in quicker restoration time to our customers and a safer

1392 environment for on-the-ground firefighting.

1393 **13. Vegetation management and inspections**

1394 13.1. Detailed inspections of vegetation around distribution

1395 Pre-inspection line patrols for distribution are completed on a two-to-six-year cycle. These cycles consider the growth rates, locations, fire risk, and Occupational Safety and Health 1396 1397 Administration (OSHA) compliance thresholds to meet cycle objectives. Pre-inspectors identify, 1398 document and notify owners to have work assigned and completed within the routine schedule. 1399 Vegetation will either be identified as needing pruning, removal or needing herbicide treatment 1400 to maintain right of way (ROW) reliability. Designation depends on ownerships desires, species, 1401 location, feasibility, or other determining factors that would necessitate maintenance. Work is 1402 documented in the Mobile Vegetation Management application (MVM) to be recorded, and then 1403 disseminated to the contractor for completion.

1404 13.2. Detailed inspections of vegetation around transmission

Pre-inspection line patrols for transmission are completed on a one-to-five-year cycle. These
cycles consider the growth rates, locations, fire risk, Occupational Safety and Health
Administration (OSHA) compliance, and forestry action thresholds to meet cycle objectives. Preinspectors identify, document and notify owners to have work assigned and completed within the

routine schedule. Vegetation will either be identified as needing pruning, removal or needing
herbicide treatment. Designation depends on ownership, ownerships desires, species, location,

- 1410 heroicide treatment. Designation depends on ownersmp, ownersmps desires, species, location, 1411 feasibility, or other determining factors that would necessitate maintenance. Work is documented
- 1411 in the Mobile Vegetation Management application (MVM) to be recorded, and then disseminated
- 1413 to the contractor for completion.

1414 13.3. Emergency response vegetation management

1415 Upon receipt of a call out for emergency response for emergent tree work during a storm or 1416 outage event, the planner will create a Non-Routine Mobile Vegetation Management profile and 1417 communicate the work to the contractor. The work's purpose is to obtain sufficient clearance for 1418 safety and power to be restored to stakeholders as soon as possible. In the event the wire is not 1419 down, work will be performed, as necessary. If a contractor arrives on-site to perform emergency 1420 work and discovers there is an electric service line broken, they are prohibited from performing 1421 any tree work until the line is grounded by an Electric Serviceman. The contractor should report 1422 the situation to their general foreman (GF) upon discovery and remain on-site, at a safe distance, 1423 to guard the site from passers-by.

- 1424 In adverse conditions, advance stakeholder notification of pruning or removal is not required,
- however, it may be necessary to contact the stakeholder if the contractor needs access to the
- 1426 property through a locked gate or to have pets moved to safety and out of the work zone. After
- 1427 work completion, photo documentation is attached to MVM non routine profile and sent to the
- 1428 planners.

1429 13.4. Fuels management

1430 It is preferable in many situations to remove small or immature vegetation rather than to obtain 1431 line-clearance by pruning. This type of vegetation has the potential to reach electrical supply

1431 lines and should be removed while still in this state. Vegetation growing directly beneath or

adjacent to electrical supply lines, diseased, dead, or dying trees that are leaning towards

1434 electrical supply lines or otherwise present a hazard to the electrical supply lines should be

1435 removed to eliminate the potential for contact.

1436 13.5. LiDAR inspections of vegetation around distribution infrastructure

1437 In addition to the routine inspection flights, APS conducts flights for gathering aerial

1438 photography and Light Detection and Ranging (LiDAR) data along some distribution electrical

supply lines. LiDAR collects valuable information regarding the vegetation along and adjacent to

1440 the power line right of ways (ROW). It provides precise data on power line structures and

1441 locations, models topography using elevation contours and identifies vegetation encroachment.

1442 The data is evaluated in person, using quality control inspections for planning, identifying and

1443 prioritizing vegetation and line maintenance work.

1444 13.6. LiDAR inspections for vegetation around transmission infrastructure

1445 In addition to the routine inspection flights, APS conducts flights for gathering aerial

1446 photography and Light Detection and Ranging (LiDAR) data along the transmission supply

1447 lines. LiDAR collects valuable information regarding the vegetation along and adjacent to the

1448 power line right of ways (ROW). It provides precise data on power line structures and locations,

- 1449 models topography using elevation contours and identifies vegetation encroachment. The data is
- evaluated and ground verified and used for planning, identifying and prioritizing vegetation and
- 1451 line maintenance work.

1452 13.7. Patrol inspections of vegetation around distribution infrastructure

1453 Pre-inspection line patrols for distribution infrastructure should identify vegetation to be pruned 1454 back to provide clear access to the facilities. A 10' wide radius cylinder of vegetation should be

1454 back to provide clear access to the facilities. A 10 wide facture cylinder of vegetation should be 1455 cleared from any pole with equipment to prevent wildfire spread if an electrical spark is

1456 discharged from the facilities. Vines growing in areas around and on poles and guy wires should

1457 be cut at the ground and treated with herbicide, if approved. Any vine remaining on the pole

- 1458 should be severed and removed from the basal cut to at least twenty feet above the ground or the
- 1459 lowest wire on the pole ensuring a person could not touch the remaining vine. Do not attempt to
- 1460 pull on the remaining vine to dislodge it from the hardware as this may cause a fault. Work is

1461 documented in the Mobile Vegetation Management application (MVM) to be recorded, and then

- 1462 disseminated to the contractor for completion.
- 1463 13.8. Patrol inspections of vegetation around transmission infrastructure

Pre-inspection line patrols for transmission infrastructure should identify vegetation to be pruned or removed entirely. Designation depends on ownership's desires, species, location, feasibility, or other determining factors that would necessitate maintenance. Work is documented in the Mobile Vegetation Management application (MVM) to be recorded, and then disseminated to the contractor for completion.

1469 13.9. Hazard tree removal

Line miles intersecting a fire risk index rating of 3.5 or higher within conifer vegetation types, excluding Pinon-Juniper woodlands, pose the greatest risk to APS facilities. Hazard vegetation by APS definition is a tree, vegetation or portion of tree or vegetation (e.g., limb) that could contact a power line, structure or equipment and cause electrical fault. Vegetation can be considered hazardous if it exhibits a structural defect that increases the chances of it failing and contacting electric utility infrastructure. Healthy vegetation may also be considered a hazard if it has encroached close enough to an electric power line and could result in electrical fault or whilit such defect that one page a risk to striking the such as

- 1477 exhibit such defect that can pose a risk to striking the overhead lines.
- Hazard vegetation can be categorized as an Emergent Hazard or Off-Cycle Hazard (seedefinitions below).
- Emergency hazard A tree that has failed and/or has caused an outage.
 Emergent hazard Requires work in less than 48 hours but has not yet caused an
- Emergent hazard Requires work in less than 48 hours but has not yet caused an outage.

- Off-Cycle hazards Requires off-cycle attention and can hold seven days for agency notification and possible comment.
- Maintenance work Notification will occur as part of the standard routine agency
 approval processes through the Natural Resource team.

1487 APS Forestry employees are encouraged to obtain their Tree Risk Assessment Qualifications

- 1488 (TRAQ) through the International Society of Arboriculture (ISA). Certified Tree Risk
- 1489 Assessment Qualified Arborist are solely utilized for the inspection and identification of hazard
- 1490 vegetation. APS utilizes both Level 1 and Level 2 Tree Risk Assessments during routine
- 1491 maintenance cycles and off-cycle maintenance. Areas are targeted for hazard tree mitigation
- 1492 through multiple considerations including recent fire activity, known insect activity from forest
- 1493 health data, as well as cyclical maintenance. Also, consideration of the cyclical overhead
- 1494 vegetation maintenance ensures lines that have not been inspected the previous year and are not
- scheduled for inspection the current year are included for hazard tree mitigation.
- 1496 13.10. Substation inspections, vegetation management
- Substation vegetation management has two components: internal (bare ground) and external(landscape maintenance).
- 1499 Internal, bare ground is achieved with herbicide application annually for vegetation mitigation to 1500 create bare grounds. This shall include the entire area of the substation inside the perimeter of the 1501 furthest fence, wall or barrier. For pedestal/pole mounted substations, areas under the equipment 1502 will be cleared of any vegetation and a defensible space around the poles will be cleared up to 1503 ten feet perimeter provided land ownership consideration for coordination.
- External landscape maintenance is achieved with substations being pre-inspected twice a year.
 The first inspection will be done within the months of January June and the second inspection
 will be done within the months of July December, documented in the Mobile Vegetation
 Management application. Pre-inspection of the vegetation includes identifying as needed
 pruning, removal and herbicide application.
- 1509 13.11. Renewable Energy and Batteries, Vegetation Management
- 1510 Renewable Energy and Batteries sites will be bare ground inside the perimeter of the furthest 1511 fence, wall or barrier and eight feet external to the fence, wall or barrier.
- 1512 13.12. DSAP
- 1513 APS Safety and Reliability Clearance Standards, including the APS Vegetation Management
- 1514 Manual for vegetation near power lines and/or equipment, recognized the need to remove
- 1515 hazardous fire fuel loading around the base of equipment poles in the Wildland Urban Interface.
- 1516 APS has adopted, as best management practice, the International Code Council (ICC), 2012 and
- 1517 the Wildland Urban Interface Code, which states a utility with a pole that has equipment attached
- to the pole must clear all vegetation 10' in all directions and 10' from the ground up. The
- 1519 clearing is being done using manual methods, including rakes, string trimmers and hand saws,
- and herbicide where approved, while maintaining adherence to all biological and cultural
- 1521 conservation measures.

- 1522 APS has prioritized the treatment of subject poles by utilizing data derived from the risk
- assessment in the Wildland Urban Interface, and in the state's highest-risk areas.
- 1524 The objective of the cycle is based on growth rate and species allowing for a two-year cycle.
- 1525 Trees and ground vegetation will be pruned in accordance with proper arboricultural techniques
- 1526 for pruning near power lines and at the base of the pole as outlined in American National
- 1527 Standards Institute (ANSI A300) pruning standards.

1528 Each customer is contacted by a combination of a postcard and pre-inspector, and the abatement

- 1529 is performed by a crew. A job profile is generated for each pole and the work is completed per
- 1530 the profile. The work profile and work site are then audited for quality control following work
- 1531 completion. Scheduling the abatement is driven by the risk to values in the communities we
- 1532 serve.
- 1533 13.13. Integrated vegetation management (IVM)
- 1534 The APS Vegetation Management program is based on Integrated Vegetation Management
- 1535 (IVM). This vegetation management methodology is a system of managing plant communities
- 1536 by identifying compatible and incompatible vegetation and evaluating, selecting and
- 1537 implementing the most appropriate control methods to ensure the safe, reliable delivery of

electricity to customers, meeting APS's established objectives. IVM approach/methodology is

- 1539 consistent with Part 7 of the American National Standards Institute (ANSI) A300 standards and
- 1540 is an integral part of the Comprehensive Fire Mitigation Plan. This includes, but is not limited to
- 1541 the following areas of IVM elements:
- 1542 Set Objectives such as promoting safety, preventing sustained outages caused by vegetation
- 1543 growing into electric facilities, maintaining regulatory compliance, protecting structures, and 1544 security.
- 1545 Evaluate the Site inspection of right of ways (ROW) before, during and after vegetation
- 1546 management work to identify and target incompatible vegetation that poses a risk or identifies a
- 1547 situation that would not be consistent with the APS set of objectives.
- 1548 Define Action Thresholds level at which the method of control would be initiated.
- Evaluate and Select Control Methods selecting the most appropriate vegetation control
 methods including manual, mechanical and chemical techniques.
- 1551 Implement IVM removing and pruning incompatible vegetation under and around utility lines1552 and infrastructure through careful, targeted manual and mechanical treatments.
- 1553 Monitor Treatment and Quality Assurance post-work monitoring of treatment effectiveness
- and quality. The ROWs are inspected annually to plan, prioritize and conduct utility vegetation management work, in compliance with FERC reliability standard (FAC 003-4).

INTERNATIONAL CODE COUNCIL: COMPLIANCE REQUIREMENTS

The provisions contained in this appendix are not mandatory unless specifically referenced in the adopting ordinance.

SECTION A101 GENERAL

A101.1 Scope. The provisions of this appendix establish general requirements applicable to new and existing properties ocated within wildland-urban interface areas.

A101.2 Objective. The objective of this appendix is to provide necessary fire-protection measures to reduce the threat of wildfire in a wildland-urban interface area and improve the capability of controlling such fires.

SECTION A102 VEGETATION CONTROL

A102.1 General. Vegetation control shall comply with Sections A102.2 through A102.4.

A102.2 Clearance of brush or vegetative growth from roadways. The code official is authorized to require areas within 10 feet (3048 mm) on each side of portions of fire apparatus access roads and driveways to be cleared of nonfire-resistive vegetation growth.

Exception: Single specimens of trees, ornamental vegetative fuels or cultivated ground cover, such as green grass, ivy, succulents or similar plants used as ground cover, provided they do not form a means of readily transmitting fire.

A102.3 Clearance of brush and vegetative growth from electrical transmission and distribution lines. Clearance of brush and vegetative growth from electrical transmission and distribution lines shall be in accordance with Sections A102.3.1 through A102.3.2.3.

Exception: Sections A102.3.1 through A102.3.2.3 do not authorize persons not having legal right of entry to enter on or damage the property of others without consent of the owner.

A102.3.1 Support clearance. Persons owning, controlling, operating or maintaining electrical transmission or distribution lines shall have an *approved* program in place that identifies poles or towers with equipment and hardware types that have a history of becoming an ignition source, and provides a combustible free space consisting of a clearing of not less than 10 feet (3048 mm) in each direction from the outer circumference of such pole or tower during such periods of time as designated by the code official.

Exception: Lines used exclusively as telephone, telegraph, messenger call, alarm transmission or other lines classed as communication circuits by a public utility.

A102.3.2 Electrical distribution and transmission line clearances. Clearances between vegetation and electrical lines shall be in accordance with Sections A102.3.2.1 through A102.3.2.3.

A102.3.2.1 Trimming clearance. At the time of trimming, clearances not less than those established by Table A102.3.2.1 shall be provided. The radial clearances shown below are minimum clearances that shall be established, at time of trimming, between the vegetation and the energized conductors and associated live parts.

Exception: The code official is authorized to establish minimum clearances different than those specified by Table A102.3.2.1 when evidence substantiating such other clearances is submitted to and *approved* by the code official.

TABLE A102.3.2.1 MINIMUM CLEARANCES BETWEEN VEGETATION AND ELECTRICAL LINES AT TIME OF TRIMMING

LINE VOLTAGE	MINIMUM RADIAL CLEARANCE FROM CONDUCTOR (feet)
2,400 - 72,000	4
72,001 - 110,000	6
110,001 - 300,000	10
300,001 or more	15

For SI: 1 foot = 304.8 mm

A102.3.2.2 Minimum clearance to be maintained. Clearances not less than those established by Table A102.3.2.2 shall be maintained during such periods of time as designated by the code official. The site-specific clearance achieved, at time of pruning, shall vary based on species growth rates, the utility company-specific trim cycle, the potential line sway due to wind, line sag due to electrical loading and ambient temperature and the tree's location in proximity to the high voltage lines.

Exception: The code official is authorized to establish minimum clearances different than those specified by Table A102.3.2.2 when evidence substantiating such other clearances is submitted to and *approved* by the code official.

TABLE A102.3.2.2 MINIMUM CLEARANCES BETWEEN VEGETATION AND ELECTRICAL LINES TO BE MAINTAINED

LINE VOLTAGE	MINIMUM CLEARANCE (inches)	
750 - 35,000	6	
35,001 - 60,000	12	
60,001 - 115,000	19	
115,001 - 230,000	30.5	
230,001 - 500,000	115	

1557

1558 Figure 10. Excerpt from the International Code Council Wildland Urban Interface Code

- 1559 APS Transmission Rights-of-Way (ROW) are inspected annually to plan, prioritize and conduct
- 1560 utility vegetation management work in compliance with FERC reliability standard (FAC 003-4).
- 1561 The ICC Code has been adopted and implemented on distribution equipment poles as a best
- 1562 management practice. This work is completed on subject poles in the Wildland Urban Interface
- 1563 (WUI) in APS service territory, as described in the Defensible Space program (DSAP),
- 1564 previously covered in the Comprehensive Fire Mitigation Plan. The APS DSAP currently
- 1565 consists of poles which contain equipment such as transformers, fuses, arrestors, switches,

regulators, capacitors and any additional equipment identified with the potential to create aspark.

1568 13.15. Right Tree-Right Place

1569 Strategic placement of trees and vegetation has direct benefits for home and business owners.

- 1570 However, areas near and around infrastructure can become a safety hazard and cause power
- outages if planted within close proximity. Often times there may be overhead or undergroundutilities within properties that can be hazardous when planting and pruning trees or shrubs.
- 1572 unities within properties that can be hazardous when planting and pluning trees of shrubs. 1573 Shrubs and trees planted near overhead lines should not grow taller than 15 feet, but height
- 1575 should be determined by a qualified utility arborist to ensure the height is suitable for the site.

1575 **14. Stakeholder and public coordination during an incident**

1576 14.1. Emergency planning and preparedness programs

1577 APS Fire Mitigation continually identifies the key components, resources and personnel to collaborate in an annual forum to discuss and act upon aspects associated with wildfire 1578 awareness and mitigation. Collaboration consists of energy control center (ECC), distribution 1579 1580 operations center (DOC), Training, Operations, Engineering, Communications, and the Fire 1581 Mitigation team to build continuity, develop roles and responsibilities and define objectives in an 1582 emergent situation. The team is tasked with an annual meeting that consists of a table-top drill to 1583 test current response systems and communications to a simulated exercise. This drill is used to 1584 identify what works and what needs to be addressed within the system to ensure timely and 1585 accurate information. One of the key components is to allow personnel from areas that do not 1586 work together often but could be working side by side in an emergent situation to have some 1587 familiarity.

- 1588 Summer Readiness Communication Objectives:
- Systems Health and Outage Reports
- Communicating Elevated Fire Condition Requirements
- Fire Mapping and Communications with ECC and DOC
- Conduct Annual Forum with T&D
- Participate in Summer Readiness
- 1594 14.2. Emergency Management and Fire Response

1595 Our APS commitment is to provide a resilient infrastructure to meet the needs of the community, 1596 customers and employees through an all-hazards approach focusing our efforts on mitigation,

1596 customers and employees through an an-nazards approach focusing our errors on mitigation, 1597 preparedness, response, and recovery. APS emergency management establishes the framework to

prepare for and respond to all hazards, both natural and man-made, in the APS service area. The

process is designed to be flexible and scalable to respond to any type and size of disaster.

1600 Preparedness is a strategic approach to ensuring employees are equipped to respond to

1601 emergencies that may occur in the workplace. To provide basic actionable information, our team

- has put together resources each department can use to determine what information they need to respond to an emergency at one of our APS facilities
- 1603 respond to an emergency at one of our APS facilities.

1604 This process incorporates the National Incident Management System (NIMS) and the Incident 1605 Command System (ICS) into the general approach toward responding to emergencies. NIMS is a 1606 system that provides a consistent nationwide approach for federal, state and local governments 1607 and private industry to work effectively and efficiently together to prepare for, respond to and 1608 recover from domestic incidents, regardless of cause, size or complexity. ICS is a standardized 1609 incident management concept designed specifically to allow responders to adopt an integrated 1610 organizational structure equal to the complexity and demands of any single incident or multiple 1611 incidents without being hindered by jurisdictional boundaries.

- 1612 This process provides the guidelines necessary to coordinate Transmission and Distribution
- 1612 Interproteins provides the galaxies necessary to coordinate Transmission and Distribution
 1613 emergency management activities with APS districts, divisions and the Corporate Emergency
 1614 Operations Center (CEOC).
- 1615 APS participates in and is a signatory with the Western Regional Mutual Assistance Agreement.
- 1616 This agreement allows the signatories to share resources in the event of an emergency affecting
- 1617 the generation, transmission, distribution, services and/or related facilities owned or controlled
- 1618 by a Party to the Agreement. A "Requesting Party" may request another Party or Parties, the
- 1619 "Assisting Party" to provide assistance. The Assisting Party shall, in its sole discretion,
- 1620 determine if it shall provide such assistance, including the extent and limitations of that
- assistance. If the Assisting Party determines to provide assistance, such assistance shall be
- 1622 provided in accordance with the terms and conditions of the Western Regional Mutual Assistance
- 1623 Agreement.
- 1624 The T&D Emergency Management program uses five preparedness Mission Areas: Prevention,
- 1625 Protection, Mitigation, Response, and Recovery to provide an all-hazard consequence
- 1626 management approach to emergencies and disasters. The mission areas represent a spectrum of
- 1627 activity. They are highly interdependent and there is regular coordination among departments and
- 1628 agencies working to prevent, protect against, mitigate, respond to, and recover from all threats
- 1629 and hazards including the threat of wildland fire.
- 1630 Additional efforts are made in the participation of Community Wildfire Protection Plans (CWPP)
- 1631 and Right of Way (ROW) Annual Meetings. The Maricopa County Community Wildfire
- 1632 Protection Plan requires an annual meeting between APS and SRP to mutually identify locations
- 1633 of needed vegetative treatments within ROW in high-risk areas of the Wildland Urban Interface
- 1634 (WUI) and support the core team in obtaining grants and agreements necessary to implement
- 1635 vegetative fuel reduction projects adjacent to ROW.

1636 14.3. Adequate and trained workforce for service restoration

- 1637 Mutual assistance is an essential part of the energy industry contingency plan and restoration
- 1638 process. Utility and electric service companies impacted by a major outage event use mutual
- 1639 assistance to augment the size of their workforce by borrowing restoration workers from other
- 1640 utility companies. If APS requests, a utility company will send trained and qualified skilled
- 1641 restoration workers, along with specialized equipment, oversight management and support
- 1642 personnel to assist the restoration effort. APS is a member of multiple emergency associations to

facilitate mutual assistance and maintain active mutual assistance agreements with the following
 organizations, Western Energy Institute and Edison electric institute. The decisions to deploy and
 respond teams or request mutual assistance as facilitated by APS Transmission and Distribution
 Incident Command Center (TDICC) and determined by the consultation with key operational
 directors and executives.

1648 14.4. Community outreach, public awareness, and communication efforts

A variety of measures can be taken to support information flow to customers when a wildfire
 incident occurs that may cause prolonged outages. Depending on the outage, some of these steps
 include:

- Sending automatic outage alerts through email or text message to customers
- Communicating directly with specific commercial customers
- Contacting and checking in with medically monitored customers per guidelines
- Updating the APS Outage Map with timely information
- Contacting customers with outage information through the dialer system
- Providing customers an automated phone system to report outages and receive updates

During extended outages, impacted customers will receive an additional notice that provides
information about resources, along with regular updates. Customers receiving alerts will be
directed to the APS Outage Map for more information.

- 1661 In addition, the Fire Mitigation Communication plan helps establish APS as a trusted community
- 1662 partner, educate customers about our fire prevention efforts to maintain reliable serve, inform
- 1663 them about potentially prolonged outages ahead of a wildfire, and encourage them to take
- 1664 preparedness action. The APS External Communications and Public Affairs teams partner to
- 1665 develop and implement the following communications tactics:
- Conduct outreach to elected officials and stakeholders, present messaging to city councils, fire chiefs and agencies, and distribute outreach material.
- Deploy a seasonal bilingual campaign in English and Spanish from April to September
 that provides customers with timely updates and preparedness information in the form of
 emails, postcards, bill messages, social media, the APS website, and newsletters.
- Develop unique TV, radio and print news pitches and partner with news organizations to distribute important preparedness tips and information about APS's fire preparedness efforts and find opportunities to collaborate with leaders in Arizona's fire community.
- Produce videos and develop website and social media content to engage customers in information online.

1676 14.5. Preparedness and planning for service restoration

1677 Emergency Events are managed at the lowest level of the organization possible, within the scope,

1678 capabilities and resources within that level. Escalation occurs when additional resources or

1679 support is needed to assist in the management of the event. Large-scale or high-impact events are

1680 managed by the line of business in the T&D Incident Command Center (ICC). Events managed

1681 at this level utilize the incident action planning process. The "Planning P" outline provides a

1682 consistent rhythm and structure to incident management with a set cadence for meetings and

- 1683 communication. In the Tactics meeting, key players review the proposed tactics developed by the
- 1684 Operations Section and conduct planning for resource assignments to ensure safe and timely
- 1685 service restoration.

1686 14.6. After Action Reporting and Improvement

1687 At the conclusion of the management of the emergency event, a debrief will be conducted. 1688 Additional After-Action meetings may be scheduled as well as deemed necessary by the 1689 Emergency Manager or Incident Command Center (ICC) Director. Notes will be taken during 1690 these discussions and compiled into a usable document known as the After-Action Report and 1691 Improvement Plan (AAR/IP). This document will be used for making changes to any processes, systems, plans, or procedures as identified. Each member of the ICC will keep records of the 1692 1693 event, their participation and actions taken. The AAR/IP will be completed by the T&D 1694 Emergency Manager following any activation of the ICC.

- 1695 14.7. Emergency management operations
- 1696 Emergency Management operations are detailed in the T&D Emergency Operations Plan (EOP).

1697 14.8. Stakeholder cooperation and community engagement

As part of our core values, APS is constantly striving to meet and exceed the best management practices for fire mitigation. This is maintained by following the cohesive strategy and remaining compliant with the most current fire regulatory information. APS Fire Mitigation is integrated with state and federal resources which provide accurate and timely information on current and expected regulations and compliance. This is accomplished through relationships developed with the State Fire Marshal's Office, State Land Office, State Forester's Office, and federal agencies and organizations.

The Fire Mitigation Specialists participate in the following list of organizations to ensure the
participation of any conversation that will impact the business or operations of APS as related to
regulatory compliance. The following list includes but is not limited to:

- 1708 National Fire Code
- Arizona State Forester WUI Council
- Ponderosa Fire Advisory Council (PFAC) (Flagstaff)
- Four Forest Restoration Initiative (4FRI)
- 1712 Prescott Area Wildland Urban Interface Commission
- Southwest Incident Management Teams
- Yavapai County Local Emergency Planning Committee
- State Emergency Management, including all (11) counties APS serves

• Arizona Fire Chiefs Association

1717 • USFS (FMO) Situation/Fire Restriction calls

1718 Among these organizations, APS participates closely with the National Cohesive Wildland Fire

1719 Management Strategy and Arizona Fire Adapted Communities and has adopted these approaches

to the APS Fire Mitigation program from the utility perspective.

1721 The National Strategy establishes a national vision for wildland fire management, defines three

1722 national goals, describes the wildland fire challenges, identifies opportunities to reduce wildfire

risks, and establishes national priorities focused on achieving the national goals. It is a strategic

push to work collaboratively among all stakeholders and across all landscapes, using best science

- to make meaningful progress toward the three goals.
- 1726 (https://www.forestsandrangelands.gov/strategy/thestrategy.shtml):
- 1727 **1.** Resilient Landscapes
- 1728 **2.** Fire Adapted Communities
- 1729 **3.** Safe and Effective Wildfire Response

1730 APS Fire Mitigation Specialists participate in the Arizona Fire Adapted Communities (AZ FAC)

1731 organization to collaborate and help share the National Strategy on a statewide level. The

1732 Arizona Fire Adapted Communities' mission is to create fire adapted communities that

1733 understand the beneficial role of fire on our landscapes, embrace responsibility for their risk and

take actions to protect the social, economic and ecological values threatened by wildfire

1735 (<u>http://azfac.org/</u>).

1736 The APS Fire Mitigation program has joined the International Wildfire Risk Mitigation

1737 Consortium (IWRMC) which is an international collaborative effort amongst electric utilities to

1738 identify and share best management practices. IWRMC and APS participation focuses on topics

1739 surrounding asset management, operations and protocols, risk management, vegetation

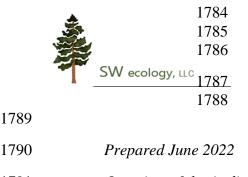
1740 management, data governance, and stakeholder engagement.

1741 14.9. Cooperation with suppression agencies

1742 APS strives to create and maintain relationships with all stakeholders. These relationships begin

1743 with preseason coordination and collaboration meetings that continue throughout the year.

- 1744 During a wildland fire incident, the Fire Mitigation team coordinates with the fire resources. This
- 1745 typically begins with communication to the authoritative dispatch center. Once an incident has
- been confirmed and has a potential impact to APS infrastructure, the Fire Duty Officer
- 1747 determines the level of APS engagement with the incident. The Fire Duty Officer may determine
- 1748 it necessary to provide an on-scene representation (Fire Liaison). The Fire Liaison coordinates
- 1749 efforts with firefighting agencies and keeps firefighter and public safety as a top priority.
- 1750 Identifying electrical hazards and mitigation strategies to reduce impacts and restoration efforts
- are also part of the Fire Liaison coordination. Depending on the size and complexity of the
- 1752 incident, the Fire Liaison may be coordinating with any of the following Incident Management
- 1753 Team members: Incident Commander, Operations Section Chief or Liaison Officer. Regardless


- 1754 of the wildland fire incident agency, APS maintains a collaborative approach to achieve the goals of all parties. 1755
- 1756 14.9.1. Prescribed fire impacts to APS

1757 Publicly managed land agencies are increasing the number of prescribed fires to meet multiple 1758 objectives including hazardous fuel reduction, wildlife habitat restoration and watershed 1759 restoration. These prescribed fires are often conducted in wildland urban interface areas that 1760 include APS infrastructure. It is paramount for APS fire mitigation to work cooperatively with land management agencies to mitigate potential impacts from prescribed fire while working 1761

- toward a common goal of ecological restoration. APS recognizes the need for prescribed fire 1762 1763 treatments and fully supports implementation on the landscape with a collaborative approach.
- 1764 While outcomes of prescribed fires can be beneficial in terms of reducing future wildfire threat,
- 1765 there are also potential impacts to APS. In terms of immediate and direct impacts during the
- prescribed fire, there is the potential for smoke impacting APS systems, fire encroaching the 1766
- 1767 Rights-of-Way (ROW) and poles, as well as limited access to equipment due to closure areas.
- 1768 Prolonged, indirect impacts include delayed tree mortality following a prescribed fire creating
- 1769 hazard trees as well as return treatments. Prescribed fire at times requires re-introduction of fire
- 1770 to maintain treatments and often translates to continued impact to APS systems and ROWs.
- 1771 With the advancement of ecological restoration projects such as the Four Forest Restoration
- 1772 Initiative (4FRI) and Flagstaff Watershed Protection Project (FWPP) in combination with others,
- 1773 prescribed fire frequency and regularity are anticipated to increase in the future, causing an
- 1774 increase in potential impacts. APS fire mitigation is, and will continue working on, building
- 1775 relationships with land management agencies. APS remains an integral shareholder of prescribed
- 1776 fire planning for prescribed fire practitioner safety, to reduce customer impacts and improve
- 1777 resiliency of the electrical grid.

15. Continuous Improvement 1778

1779 An initial review was conducted in 2019 and a follow up review in 2022 by a third party to 1780 examine the Comprehensive Fire Mitigation Plan (CFMP) with full access and visibility for review. The audit conducted over 45 interviews, both internal and external, and the results 1781 1782 include a critical look at all aspects of the program and plan. Recommendations and corrective 1783 actions were taken to improve as well as build on the already solid foundation of the CFMP.

REPORT: Assessment and Findings of the Arizona Public Service Comprehensive Fire Mitigation Plan and Implementation Strategy

- 1790
- 1791 Overview of the Audit:

1792 The CFMP generally acknowledges wildfire as a recurring threat to APS 1793 infrastructure, the adjacent ecosystems to system ROW's and the communities 1794 and areas served by APS. APS has demonstrated its commitment to protecting its 1795 physical assets, employees and customers against the danger of wildfires. It works 1796 to identify all potential fire as a manageable risk, through operation and 1797 maintenance best practices and implementing effective fire risk mitigation 1798 actions. APS also implements best-science and evidence-based decisions to 1799 mitigate the possibility of financial costs and potential liability associated with 1800 wildland fires.

- 1801The CFMP outlines strategies, system modernization priorities, and operational1802procedures that help employees identify, mitigate, and respond to evolving1803wildland fire risks. The Plan establishes safety as the first priority and1804subsequently describes methods of determining situational awareness, Enterprise1805fire mitigation operational protocols, and response actions specific to wildfire1806risks.
- 1807 *Summary of the Audit:*

1808The Plan evaluation found that the intent of the Plan is to create a dynamic1809document for policies, procedures, and metrics that mitigate the fire risk1810potential, and was found to be effective in meeting the stated objectives. By1811continuing to update the Plan with current policies, strategies, and procedures,1812the goal of implementing effective and defendable fire mitigation measures will1813result in positioning the company to continue its successful trajectory and1814outcomes into the future.

1815 15.1. Continuous improvement working group

1816 The working group includes individuals from across Transmission, Distribution and 1817 Communications (TD&C) to evaluate fire mitigation efforts and create continuous improvement 1818 across the company. This working group consists of representatives from various business units, 1819 allowing for the ability to combine efforts and objectives to prevent, mitigate and respond to 1820 wildfire risk. The overall scope of the fire mitigation working group includes identification of 1821 concerns and new projects leading to increased reliability and safety.

1822 15.2. Measures of effectiveness

The APS Comprehensive Fire Mitigation Plan (CFMP) includes measures of effectiveness aimed
at gauging the efficiency of policies, programs and mitigations in place. Such effectiveness
measures include evaluation criteria, comprising of yearly work plan completion, monitoring of
system to ground ignitions, compliance with industrial work plan restrictions, and others.
Identifying the appropriate participants, targeting future opportunities and pinpointing the

- desired outcomes are all part of measuring the program's effectiveness and creating a path
- 1829 forward.
- 1830 Gauging the level of performance in relation to fire mitigation is key to continuing success
- 1831 moving forward. A year-end review of fire mitigation and reporting at the Fire Mitigation Forum

1832 will incorporate measures of effectiveness. Conveying the results yearly also fosters continuous1833 improvement and identifies program improvement needs and corrective actions.

1834 15.3. International wildfire risk mitigation consortium

The International Wildfire Risk Mitigation Consortium (IWRMC) is an electric utility industrysponsored collaborative designed to facilitate the sharing of wildfire risk mitigation insights and
discovery of innovative and unique wildfire utility practices from across the globe. The
organization established a vision to facilitate networking channels between members of the
global utility community to support ongoing sharing of data, information, technology, practices,

- and proactively address the wildfire issue through learning, innovation, analysis, assessment, and
- 1841 collaboration. The mission is to leverage global experiences, ideas and identify meaningful
- 1842 differences to accelerate learning, sharing and the development of new risk models and
- 1843 mitigation strategies. Also, the goals of expediting data collection, validation, evaluation,
- 1844 introducing new technology, and advancing the deployment of innovative solutions enable
- 1845 members to lead the industry transformation.
- 1846 IWRMC Working Group discussions cover many different topics and focus areas. The six

1847 working groups cover a variety of emphasis areas including: Asset Management, Operations and

1848 Protocols, Risk Management, Vegetation Management, Data Management, and Stakeholder

1849 Engagement. Members routinely share their experiences and help to identify industry leading

1850 practices. Occasionally, members invite leading vendors who they have worked with to share

1851 more information on the products and services they offer to improve and expedite decision

- 1852 making for those exploring similar options.
- 1853 Some of the main initiatives and topics of exploration include:
- News and Research Web Portal updated and curated weekly with the latest
 wildfire/bushfire-related news, academic research, regulations, and mitigation plans from utilities around the world.
- Surveys of industry peers to gather insights into the processes, methodologies, tools, and standards utilized by utilities to support their wildfire risk mitigation activities.
- Deep-dive analyses using public and/or member-contributed data and supported by UMS
 Group's expert analytic and modeling teams.
- Case studies to communicate relevant experiences and provide lessons learned to the broader industry.
- Joint development projects created to pool resources, coordinate data collection and document real-world results in the pursuit of new ideas, approaches and innovations.
- New technology and tools to explore the vendor landscape, broaden the dataset of real world experiences and utilize collective leverage to deploy new tools and technologies
 quickly and affordably.

Benchmarking, analysis and performance metrics are considered to better understand the
 APS organization performance relative to the industry, or track progress over time to
 build best management practices and reduce the risk and impact of wildfire.

1871 **16. Past three-year impacts from wildfire**

1872 Arizona has experienced an increase in the amount of wildfire activity across the state over the 1873 last several decades. In the last three years, APS has experienced increased exposure to wildfires

across its service territory. Impacts from wildfire have included outages to distribution circuits,

1874 across its service termory, impacts from whether have included outages to distribution circuits, 1875 transmission lines and range from momentary to extended in duration. The average number of

1876 fires across the state for the last three decades is 2,694, burning 253,865 acres on average. For

- 1877 the last three years, the averages have represented an increase to 573,621 acres burned with the
- 1878 number of fires remaining steady around 1,765 per year.
- 1879 While the number of fires has remained steady, the size of wildland fires has increased
- 1880 substantially. APS has responded to an increase in fire activity by activating Transmission,
- 1881 Distribution, and Communications Incident Command Center (TDCICC) early and engaging
- 1882 throughout the duration of the incident. With early activation of TDCICC, APS has created an
- 1883 effective response to wildfires and restoration following an event.

1884 **17. Planned Implementations for 2024 to Mitigate Risk**

1885 Mitigating risk can result in outages to our customers and we realize any interruption of power is

1886 an inconvenience. APS continues to innovate our risk mitigation efforts to create a better

1887 experience for our customers. In 2024, APS will continue to invest in technology to reduce the

- 1888 risk while providing for customer experience. In addition, improving our system hardening to
- 1889 make the grid more resilient to wildfire and therefore reducing risk and impact overall.
- 1890 Situational awareness will remain an emphasis throughout 2024 with an increased integration of
- 1891 fire mitigation efforts throughout APS and extending to stakeholders.

1892 **18. Plan summary**

1893 The APS Comprehensive Fire Mitigation Plan (CFMP) does not describe all ongoing operations 1894 and maintenance APS performs and will continue to perform to reduce wildfire risk in Arizona.

APS is constantly improving its plan in vegetation management, inspections and system

- hardening, situational awareness, operational practices, public awareness to wildfire, and
- 1896 hardening, situational awareness, operational practices, public awareness to wildlife 1897 industry research
- 1897 industry research.
- 1898 The APS CFMP is a living document that is continuously reviewed, evaluated and modified as
- 1899 needed. Plan drivers such as fire mitigation initiatives and strategies are assessed regularly to
- allow for the continuous evaluation of wildfire risk reduction programs. Fire Mitigation will
- 1901 monitor and evaluate both the performance of the strategies and programs described in this plan
- and the plan's efficacy in addressing wildfire risk.
- 1903 Ongoing trend analyses of fire risk indices are collected and analyzed to adapt to changes in the 1904 Arizona ecosystem. APS recognizes when dealing with natural systems (wildfire ecosystem), it

- is impossible to predict all indices with certainty but anticipates with the investments in the program, trends will reduce risk.
- 1907 As mentioned in the executive summary, reducing risk to our human and environmental
- 1908 communities is paramount. Wildland fuel mitigation needs to be emphasized to all stakeholders
- as we work together to address the risk of catastrophic wildfire. We cannot make significant
- 1910 strides in reducing catastrophic wildland fire risk unless all stakeholders participate in creating
- 1911 defensible space. APS has identified the risk and is working with its partners to create a cohesive
- 1912 strategy for fire mitigation.

1913 **19. Glossary of terms and acronyms**

- 1914 **CFMP**: Comprehensive Fire Mitigation Plan
- 1915 **ConvergePoint**: APS central repository for enterprise policies, processes, and procedures
- 1916 **CPR**: [Wildland] "Call, Plan, and Respond," "Call, Plan, Respond", the APS approved method
- 1917 for responding to wildfires.
- 1918 **DOC**: Distribution Operations Center
- 1919 **DOE**: Distribution Operations Engineering
- 1920 ECC: Energy Control Center
- 1921 Elevated Fire Conditions: the period when Preparedness Level is 3 or above
- 1922 EMS: Energy Management System
- 1923 **Emergent Work**: Work that shall be completed because of an operational situation that 1924 currently poses a threat to the safety and reliability of the grid.
- Fire Guard: A Fire Guard shall consist of 3 hours of continual watch. A Fire Guard can be
 provided by any APS employee, or contractor that has the proper fire tools and the ability to act
 if necessary.
- Fire Guard Patrol: Patrol to be safely performed ASAP after re-energization of a circuit, or
 sectionalized portion of a circuit, to check for possible ignitions due to re-energization.
- **Fire Risk Index**: A risk index given to a line or distribution feeder by the FMS measured by
- three major fire components (probability of ignition, probability of a fire will carry, and fire
- impact as risk). Indices range from 1-5 in 0.5 increments, (5) being the highest risk.
- 1933 **FM**: Fire Mitigation
- 1934 **FMS**: Fire Mitigation Specialist
- 1935 Ground to System Fire: An ignition source/fire unrelated to APS owned equipment, which has1936 an impact to APS.

- 1937 High Fire Risk Circuits: those circuits that have been determined to be high risk for fire based
- 1938 on historical fire activity, and on assigned Fire Risk Index. Additional operational measures are
- applied to these circuits for Elevated Fire Conditions.
- **Impractical**: referring to a line patrol when conditions such as weather, terrain, or time of dayprevent a line patrol from occurring due to safety concerns.
- 1942 **NIFC:** National Interagency Fire Center The National logistical support center.
- 1943 Non-Emergent Work: Planned work that is not critical to operations and reliability of the grid1944 in the short term.
- 1945 **Pre-Emergent Work:** Work that shall be completed because of an operational situation that 1946 poses a threat to the safety and reliability of the grid in the immediate future.
- 1947 **Preparedness Level**: Wildfire preparedness level from 1 5 with 1 being the lowest/least severe
- and 5 being the highest/most severe. Each Preparedness Level has specific work restrictions that
- 1949 must be adhered to by T&D personnel.
- 1950 **Shall**: Denotes a requirement. Compliance with this step or item is mandatory.
- 1951 Should: Denotes a recommendation. Compliance with this step or item is optional but1952 recommended by management.
- 1953 SOCS: System Outage Communication Specialists
- 1954 System to Ground Fire: Any ignition source related to APS equipment or related system1955 operations
- 1956 SWCC: Southwest Coordination Center provides logistical support for wildland fire,
- 1957 prescribed fire, and other all-risk incidents between the twelve Federal and State Dispatch
- 1958 Centers of the Southwest area. In addition, the Center provides Predictive Services and
- 1959 Intelligence related products.
- 1960 **TDCICC:** Transmission, Distribution, and Communications Incident Command Center
- WUI (Wildland Urban Interface): The line, area, or zone where structures and other human
 development meet or intermingle with undeveloped wildland or vegetative fuels.
- 1963

1964 **20.** APS references and document locations

- 1965 1. TD–M0–PRD–D010 Elevated Fire Conditions, APS ConvergePoint
- 1966 2. TD–M0–PRD–E010 Comprehensive Fire Mitigation Plan, APS ConvergePoint
- 1967 3. TD-DO-PRD-A035 Operations Preparation & Response to Elevated Fire Conditions, APS
 1968 ConvergePoint
- 1969 4. Accident Prevention Manual and Safe Working Rules, Corporate Safety & Health SharePoint
- 1970 5. Distribution Operations Supporting Information, Distribution Operations SharePoint
- 1971 6. Vegetation Management Manual, Forestry, Fire & Resource Management SharePoint
- 1972 7. TD-DO-PRD-A001 Transmission and Distribution Electric Load Curtailment Plan, APS
- 1973 ConvergePoint
- 1974 8. TD-PE-PRD-1005 Fire Extinguisher Procedure, APS ConvergePoint
- 1975 9. Forestry, Fire & Resource Management Business Continuity Plan (BCP), ConvergePoint
- 1976 10. Right Tree Right Place, Forestry, Fire & Resource Management SharePoint
- 1977 11. Western Region Mutual Assistance Agreement, APS Emergency Management
- 1978 12. Standard Operating Guidelines Fire Mitigation Specialist, Fire Mitigation SharePoint
- 1979 13. Fire Mitigation P Level & CPR Card, Fire Mitigation SharePoint
- 1980 14. T&D Emergency Operations Plan (EOP), T&D Emergency Management SharePoint

1981 **21. External references**

- 1982 Ballard L, Boness K, Bright D, Brill K, Buettner G, Cassady S, Castillo K, Dahlberg H, Dawe C,
- 1983 Eiden A, et al. 2010. Arizona Forest Resource Assessment. [Internet]. [cited 2020 Dec 16].
- 1984 Phoenix (AZ): Arizona State Forestry. Available from
- 1985 <u>https://dffm.az.gov/sites/default/files/media/Arizona%20Forest%20Resource%20Assessment-</u>
 1986 2010_0.pdf
- 1987 Martinuzzi, Sebastiín; Stewart, Susan I.; Helmers, David P.; Mockrin, Miranda H.; Hammer,
- 1988 Roger B.; Radeloff, Volker C. 2015. The 2010 wildland-urban interface of the conterminous
- 1989 United States. Research Map NRS-8. Newtown Square, PA: U.S. Department of Agriculture,
- 1990 Forest Service, Northern Research Station. 124 p. [includes pull-out map].
- 1991 <u>https://www.nrs.fs.fed.us/pubs/48642</u>.
- 1992 O'Brien, Renee A. 2002. Arizona's Forest Resources, 1999. Resource. Bull. RMRS-RB-2.
- 1993 Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.1994 116 p.
- 1995 Southwest Interagency Fire Restrictions and Closure Master Operating Plan 2019. c2020.
- 1996 Southwest Coordination Center. [cited 2020 Dec 16]. Available from:
- 1997 <u>https://gacc.nifc.gov/swcc/management_admin/Agency_Administrator/Agency_Administrator.ht</u>
 1998 <u>m</u>
- 1999 USDA. 2020, "Forest Insect and Disease Conditions in the Southwestern Region, 2019."
- 2000 Available at: <u>https://www.fs.usda.gov/main/r3/forest-grasslandhealth</u>
- 2001 World Population Review. c2020. World Population Review. [cited 2020 Dec 16]. Available
- 2002 from: <u>https://worldpopulationreview.com/states/arizona-population</u>.
- 2003

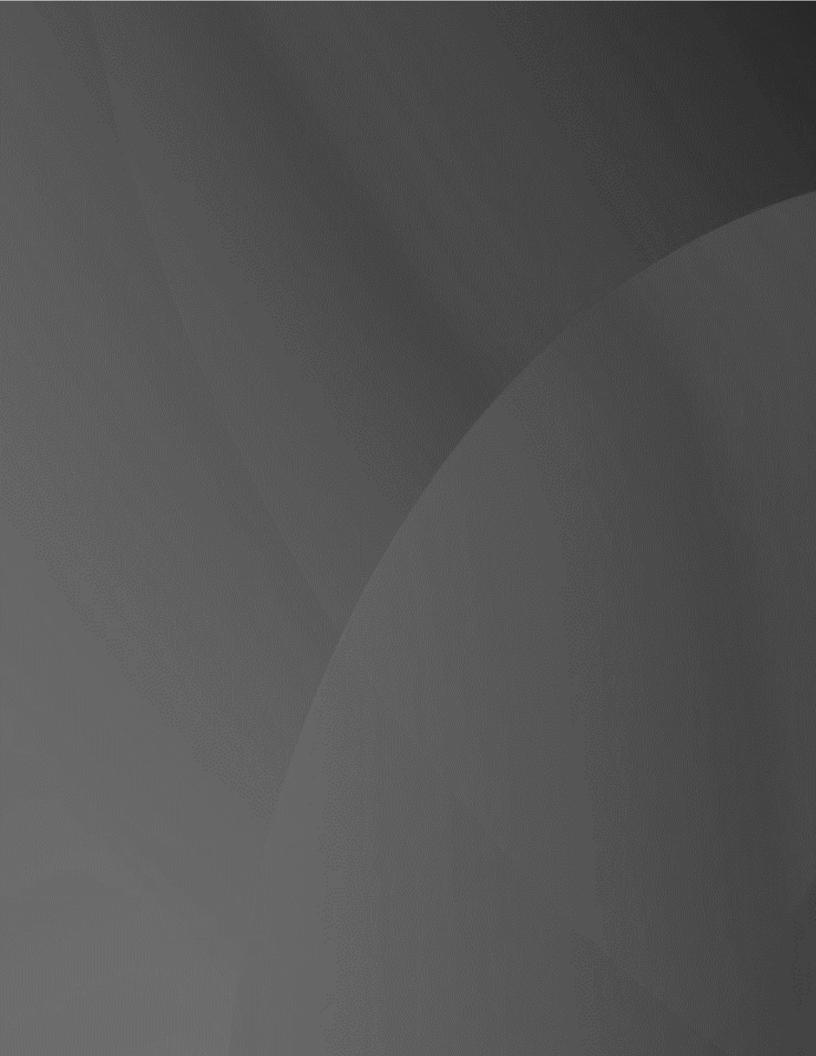
2004

2005 Publicly Managed Lands Fire Dispatch Center Contact Numbers:

2006 As stated previously in the CFMP, APS crews and contract crews shall provide some form of

prompt and reliable direct communication, such as a cell phone or portable radio, between the
 Fire Guard(s) and the work crews, and between the contractor's operations and APS Supervisor.

2009 In the event of an emergency, activate the emergency system by calling 911 and the APS Project


2010 lead. In addition, a list of the Publicly Managed Land Dispatch numbers is provided below.

2011 Please ensure the APS Wildfire CPR is reviewed each day or if a job location changes

- throughout the day.
- 2013 Check-in-Check-Out: All crews working in exemption and restricted areas are required to check
- 2014 in and check out with APS project lead each workday and provide GPS location each morning
- 2015 prior to starting work. This requirement would be determined during the Work Approval Review
- 2016 Meeting (WARM) with APS Leadership.
- 2017

Interagency Dispatch	Phone	
	Number	
Arizona: Arizona State Lands	623-582-0911	
Flagstaff: Coconino NF, NE AZ	928-527-3552	
Phoenix: Tonto NF, Payson, Globe, Mesa	480-457-1555	
Prescott: Prescott NF, BLM West & Central AZ	928-777-5700	
Springerville: Apache-Sitgreaves NF, NE-Central	928-333-6360	
AZ		
Tucson: Coronado NF, BLM SE AZ	520-202-2710	
Williams: Kaibab NF, Tusayan, Grand Canyon	928-635-2601	

